第五章 相似矩阵及二次型 第三四节 相似矩阵/对称矩阵的对角化

§5.3 相似矩阵
§5.4 对称矩阵的对角化

5.3 相似矩阵

  设 A , B A,B A,B都是 n n n阶矩阵,若有可逆矩阵 P P P,使
P − 1 A P = B , P^{-1}AP=B, P1AP=B,
则称 B B B A A A相似矩阵,或说矩阵 A A A与矩阵 B B B相似。对 A A A进行运算 P − 1 A P P^{-1}AP P1AP称为对 A A A进行相似变换,可逆矩阵 P P P称为把 A A A变成 B B B的相似变换矩阵。

定理

n n n阶矩阵 A A A B B B相似,则 A A A B B B的特征多项式相同,从而 A A A B B B的特征值也相同。

推论

n n n阶矩阵 A A A与对角阵
Λ = ( λ 1 λ 2 ⋱ λ n ) \Lambda = \left(\begin{matrix} \lambda_{1} & & & \\ &\lambda_{2}&&\\ &&\ddots&\\ &&&\lambda_{n} \end{matrix}\right) Λ=λ1λ2λn
相似,则 λ 1 , λ 2 , ⋯   , λ n \lambda_{1},\lambda_{2},\cdots,\lambda_{n} λ1,λ2,,λn即是 A A A n n n个特征值。
  对 n n n阶矩阵 A A A,寻求相似变换矩阵 P P P,使 P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ为对角阵,这就称为把矩阵 A A A对角化。

定理

n n n阶矩阵 A A A与对角阵相似(即 A A A能对角化)的充要条件: A A A n n n个线性无关的特征向量。

推论

如果 n n n阶矩阵 A A A n n n个特征值互不相等,则 A A A与对角阵相似。

5.4 对称矩阵的对角化

定理

1.对称阵的特征值是实数。
2.设 λ 1 , λ 2 \lambda_{1},\lambda_{2} λ1,λ2是对称阵 A A A的两个特征值, p 1 , p 2 p_{1},p_{2} p1,p2是对应的特征向量,若 λ ≠ λ 2 \lambda \neq \lambda_{2} λ̸=λ2,则 p 1 , p 2 p_{1},p_{2} p1,p2正交。
3.设 A A A n n n阶对称阵,则必有正交阵 P P P,使 P − 1 A P = P T A P = Λ P^{-1}AP=P^{T}AP=\Lambda P1AP=PTAP=Λ,其中 Λ \Lambda Λ是以 A A A n n n个特征值为对角元的对角阵。

推论

A A A n n n阶对称阵, λ \lambda λ A A A的特征方程的 k k k重根,则矩阵 A − Λ E A-\Lambda E AΛE的秩 R ( A − Λ E ) = n − k R(A-\Lambda E)=n-k R(AΛE)=nk,从而对应特征值 λ \lambda λ恰有 k k k个线性无关的特征向量。

《线性代数》同济大学第五版笔记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值