HashMap 的 put 方法具体流程及关键步骤
前言
HashMap 的 put 方法是其核心操作之一,用于将键值对插入哈希表中。以下是其具体流程及关键步骤,结合不同版本的实现差异(如 JDK 1.7 与 1.8)进行说明:
一、核心流程
- 初始化检查
- 首次插入时的延迟初始化:若 HashMap 的底层数组 table 未初始化(如调用无参构造方法后首次插入),则通过 resize() 方法创建默认容量为 16 的数组,并计算扩容阈值(容量 × 负载因子,默认 0.75)。
- 扩容触发条件:当元素数量超过阈值时触发扩容(JDK 1.8 中严格按阈值判断,而 1.7 还需检查插入位置是否为空)。
2.计算哈希值与索引
- 扰动函数:通过 hash(key) 方法对键的 hashCode() 进行二次哈希处理,减少低比特位冲突。具体实现为:
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
此操作将高 16 位与低 16 位异或,增强哈希分布的均匀性。
- 索引计算:通过 (n - 1) & hash 确定键值对应数组的桶下标(n 为数组长度)。
- 处理哈希冲突
- 空桶插入:若目标桶为空,直接创建新节点(Node 或 TreeNode)存入数组。
- 非空桶处理:
- 链表遍历:若桶内为链表,遍历检查是否存在相同键(通过 equals 方法):
- 存在相同键:覆盖旧值并返回旧值。
- 不存在相同键:将新节点插入链表尾部(JDK 1.8 改为尾插法,避免并发环状链表问题)。
- 红黑树处理:若桶内为红黑树,调用 putTreeVal 方法插入或更新节点。
- 链表遍历:若桶内为链表,遍历检查是否存在相同键(通过 equals 方法):
- 链表转红黑树
- 转换条件:当链表长度 ≥ 8(TREEIFY_THRESHOLD)且数组容量 ≥ 64(MIN_TREEIFY_CAPACITY)时,链表转为红黑树以提高查询效率;若容量不足 64,优先扩容而非树化。
- 扩容机制
- 触发时机:插入新节点后,若当前元素数量超过阈值,调用 resize() 进行扩容。
- 扩容操作:
-
容量翻倍:新数组长度为原数组的 2 倍(保持 2 的幂次特性)。
-
数据迁移:遍历旧数组,根据新容量重新计算索引:
-
链表拆分:JDK 1.8 优化迁移逻辑,通过 (e.hash & oldCap) == 0 判断节点是否留在原位置或迁移至 原索引 + 旧容量 的位置,减少哈希计算次数。
-
红黑树拆分:若桶内为红黑树,拆分为链表或新的红黑树。
-
-
二、JDK 1.7 与 1.8 的差异
特性 | JDK 1.7 | JDK 1.8 |
---|---|---|
数据结构 | 数组 + 链表 | 数组 + 链表/红黑树 |
插入方式 | 头插法(可能引发死循环) | 尾插法(避免并发问题) |
扩容条件 | 需同时满足元素数 ≥ 阈值且插入位置非空 | 元素数 ≥ 阈值即扩容 |
哈希计算优化 | 无 | 通过高位异或减少冲突 |
迁移逻辑 | 重新计算所有节点索引 | 利用位运算优化索引计算 |
三、关键代码片段(JDK 1.8)
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 初始化数组或扩容
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// 计算索引并处理空桶
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
// 检查首节点是否匹配
if (p.hash == hash && ((k = p.key) == key || (key != null && key.equals(k))))
e = p;
// 处理红黑树
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
// 遍历链表
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
// 链表转红黑树
if (binCount >= TREEIFY_THRESHOLD - 1)
treeifyBin(tab, hash);
break;
}
if (e.hash == hash && ((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 更新值或插入新节点
if (e != null) {
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
// 检查扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
四、性能优化点
- 哈希扰动:通过高位异或减少哈希冲突概率。
- 红黑树优化:链表长度过长时转为红黑树,将查询复杂度从 O(n) 降至 O(logn)。
- 扩容策略:JDK 1.8 的迁移逻辑通过位运算优化,减少哈希值重新计算次数。