HNAU 26th Training Problem 第 26次训练 2013 /10/05 AMA.搜索 poj 1970 (仔细看题) B.递推 poj 1850 Code C.数学 poj 2140 D.搜索 poj 1683 E.贪心 poj 1230 F.图论 poj 1469 二分图匹配 G.高精度 poj 2084 H.动态规划 poj 1682 |
A.模拟 poj 1970
题意:这个题是在19*19的五子棋寻找是否存在长度恰好等于5的五子连珠(一横,一竖,右斜,左斜)。如果有,请输出最左端的起点。
注意一点:长度大于5的不算赢,这里贡献了好多wa。
一开始没考虑左斜的这种情况(只列出6*6): 正确答案应该输出 “0”
0 0 0 0 0 1
0 2 0 0 1 0
0 0 2 1 0 0
0 0 1 2 2 0
1 1 0 0 0 0
1 0 0 0 0 0
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
#define N 19
/**深搜大于5个的不算赢*/
int G[20][20];
bool vis[20][20][4];//标记一个点是否向四个方向访问过,避免重复访问。
int sx,sy,num;
int dir[4][2]={{1,-1},{1,0},{1,1},{0,1}};//左下↓ 右下 →
void dfs(int i,int j,int k)
{
int x=i+dir[k][0];
int y=j+dir[k][1];
if(G[x][y]==G[i][j])
{
num++;
vis[x][y][k]=1;//标记该点的k方向已经走过
if(k==0){sx=x;sy=y;}//如果为第一个方向(左下),起点需要更新
dfs(x,y,k);
}
}
bool solve()
{
int i,j,k;
memset(vis,0,sizeof(vis));
for(i=1;i<=N;i++)
for(j=1;j<=N;j++)
if(G[i][j])
{
for(k=0;k<4;k++)
if(!vis[i][j][k])//该点的k方向没有走过
{
num=1;
sx=i;sy=j;//后三个方向的起点都是(i,j)
dfs(i,j,k);
if(num==5) return 1;
}
}
return 0;
}
int main()
{
//freopen("in.txt","r",stdin);
// freopen("o.txt","w",stdout);
int i,j,T;
cin>>T;
while(T--)
{
for(i=1;i<=N;i++)
for(j=1;j<=N;j++)
scanf("%d",&G[i][j]);
if(solve())
printf("%d\n%d %d\n",G[sx][sy],sx,sy);
else
printf("0\n");
}
return 0;
}
F.图论 poj 1469 二分图匹配
题意:有P门课程,每门课程都有一些学生上课,现在要每门课程要选一个课代表,但是每人只能成为一门课的课代表,问每门课能否都找到课代表。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
vector <int>edge[102];
int p;
bool vis[302];
int link[302];
int dfs(int idx)
{
for(int i=0; i<edge[idx].size(); i++)
{
int to=edge[idx][i];
if(!vis[to])
{
vis[to]=1;//标记这个点,其他的人不能和他匹配
if(link[to]==-1||dfs(link[to]))
{
link[to]=idx;
return 1;
}
}
}
return 0;
}
void init()
{
for(int i=1; i<=p; i++)
edge[i].clear();
}
int main()
{
int i,j,k,T,x;
int n;
cin>>T;
while(T--)
{
scanf("%d%d",&p,&n);
init();
for(i=1; i<=p; i++)
{
scanf("%d",&k);
for(j=0; j<k; j++)
{
scanf("%d",&x);
edge[i].push_back(x);
}
}
int num=0;
memset(link,-1,sizeof(link));
for(i=1; i<=p; i++)
{
memset(vis,0,sizeof(vis));
if(dfs(i))num++;
else break;
}
if(num==p)printf("YES\n");
else printf("NO\n");
}
return 0;
}
G.高精度
poj 2084
圆环上有2N个点,要求两两之间连线,连线互不交叉哦,问方案总数;
可以看出是求卡特兰数:an=1/(n+1) * C(n,2n) 得出递推式:a[n+1]=2*(2*n+1)*a[n]/(n+2);
1 2 3 4 5
1 2 5 14....
//package sunquan;
import java.math.*;
import java.util.*;
public class Main {
public static void main(String[] args) {
BigInteger[] a =new BigInteger [102];
a[0]=BigInteger.ZERO;
a[1]=BigInteger.ONE;
a[2]=BigInteger.valueOf(2L);
for(int i=2;i<=100;i++)
{ //a[n+1]=2*(2*n+1)*a[n]/(n+2);
long x=2*(2*i+1);
a[i+1]=a[i].multiply(BigInteger.valueOf(x)).divide(BigInteger.valueOf(i+2));
}
Scanner in= new Scanner (System.in);
int n;
while(in.hasNext()){
n=in.nextInt();
if(n==-1)break;
System.out.println(a[n]);
}
}
}