26th Training

HNAU 26th Training Problem

第 26次训练                                           2013 /10/05 AM

A.搜索     poj 1970     (仔细看题)
B.递推     poj 1850 Code 
C.数学     poj 2140
D.搜索     poj 1683
E.贪心     poj 1230
F.图论     poj 1469   二分图匹配
G.高精度   poj 2084
H.动态规划 poj 1682

A.模拟     poj 1970

题意:这个题是在19*19的五子棋寻找是否存在长度恰好等于5的五子连珠(一横,一竖,右斜,左斜)。如果有,请输出最左端的起点。

注意一点:长度大于5的不算赢,这里贡献了好多wa。
一开始没考虑左斜的这种情况(只列出6*6):  正确答案应该输出 “0

0 0 0 0 0 1
0 2 0 0 1 0
0 0 2 1 0 0
0 0 1 2 2 0
1 1 0 0 0 0
1 0 0 0 0 0

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
#define N 19
/**深搜大于5个的不算赢*/
int G[20][20];
bool vis[20][20][4];//标记一个点是否向四个方向访问过,避免重复访问。
int sx,sy,num;
int  dir[4][2]={{1,-1},{1,0},{1,1},{0,1}};//左下↓ 右下 →

void dfs(int i,int j,int k)
{
    int x=i+dir[k][0];
    int y=j+dir[k][1];
    if(G[x][y]==G[i][j])
    {
        num++;
        vis[x][y][k]=1;//标记该点的k方向已经走过
        if(k==0){sx=x;sy=y;}//如果为第一个方向(左下),起点需要更新
        dfs(x,y,k);
    }
}
bool solve()
{
    int i,j,k;
    memset(vis,0,sizeof(vis));
    for(i=1;i<=N;i++)
        for(j=1;j<=N;j++)
         if(G[i][j])
         {
            for(k=0;k<4;k++)
            if(!vis[i][j][k])//该点的k方向没有走过
            {
                num=1;
                sx=i;sy=j;//后三个方向的起点都是(i,j)
                dfs(i,j,k);
                if(num==5) return 1;
            }
         }
    return 0;
}
int main()
{
    //freopen("in.txt","r",stdin);
   // freopen("o.txt","w",stdout);
    int i,j,T;
    cin>>T;
    while(T--)
    {
        for(i=1;i<=N;i++)
            for(j=1;j<=N;j++)
            scanf("%d",&G[i][j]);
        if(solve())
            printf("%d\n%d %d\n",G[sx][sy],sx,sy);
        else
            printf("0\n");
    }
    return 0;
}

F.图论    poj 1469 二分图匹配

题意有P门课程,每门课程都有一些学生上课,现在要每门课程要选一个课代表,但是每人只能成为一门课的课代表,问每门课能否都找到课代表。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;

vector <int>edge[102];
int p;
bool vis[302];
int link[302];
int dfs(int idx)
{
    for(int i=0; i<edge[idx].size(); i++)
    {
        int to=edge[idx][i];
        if(!vis[to])
        {
            vis[to]=1;//标记这个点,其他的人不能和他匹配
            if(link[to]==-1||dfs(link[to]))
            {
                link[to]=idx;
                return 1;
            }
        }
    }
    return 0;
}
void init()
{
    for(int i=1; i<=p; i++)
        edge[i].clear();
}
int main()
{
    int i,j,k,T,x;
    int n;
    cin>>T;
    while(T--)
    {
        scanf("%d%d",&p,&n);
        init();
        for(i=1; i<=p; i++)
        {
            scanf("%d",&k);
            for(j=0; j<k; j++)
            {
                scanf("%d",&x);
                edge[i].push_back(x);
            }
        }
        int num=0;
        memset(link,-1,sizeof(link));
        for(i=1; i<=p; i++)
        {
            memset(vis,0,sizeof(vis));
            if(dfs(i))num++;
            else break;
        }
        if(num==p)printf("YES\n");
        else  printf("NO\n");
    }
    return 0;
}
G.高精度   poj 2084

圆环上有2N个点,要求两两之间连线,连线互不交叉哦,问方案总数;
可以看出是求卡特兰数:an=1/(n+1) * C(n,2n)   得出递推式:a[n+1]=2*(2*n+1)*a[n]/(n+2);

 1  2  3  4   5
 1  2  5  14....

//package sunquan;

import java.math.*;
import java.util.*;
public class Main {
	 public static void main(String[] args) {
		 
		 BigInteger[] a =new BigInteger [102];
		 a[0]=BigInteger.ZERO;
		 a[1]=BigInteger.ONE;
		 a[2]=BigInteger.valueOf(2L);
		 for(int i=2;i<=100;i++)
		 {     //a[n+1]=2*(2*n+1)*a[n]/(n+2);
			 long x=2*(2*i+1);
			 a[i+1]=a[i].multiply(BigInteger.valueOf(x)).divide(BigInteger.valueOf(i+2));
		 }
		 Scanner in= new Scanner (System.in);
		 int n;
		 while(in.hasNext()){
			 n=in.nextInt();
			 if(n==-1)break;
			 System.out.println(a[n]);
		 } 
	 }

}





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值