HNAU 25th Training Problem 第 25次训练 2013 /10 /04 AMA.模拟 poj 2317 B.递推 poj 1090 Chain 递推 + 大数加法 C.数学 poj 1761 D.搜索 poj 1680E.贪心 poj 1828 F.图论 poj 1719 G.高精度 poj 1131 H.动态规划 poj 1062 |
E.贪心 统计所有猴子中右上角(包括边界)没有猴子的个数
解题思路:先按照X轴从小到大(X相等排序,y从小到大);先选择X最大的(极大的y),然后向左边遍历,跟新y的最大值。
#include<iostream>
#include<cstdio>
#include<cstring>
#include <algorithm>
using namespace std;
#define N 50002
struct point{
int x,y;
bool operator <(const point &b)const{
return x!=b.x?(x<b.x):y<b.y;
}
}p[N];
int main()
{
int n,i,x,y;
while(~scanf("%d",&n)&&n)
{
for(i=0;i<n;i++)
{
scanf("%d%d",&x,&y);
p[i].x=x;
p[i].y=y;
}
sort(p,p+n);
int ans=1;
int mMax = p[n - 1].y; //找出x最大的
for (i = n- 2; i >= 0; i --)//向左找大于当前的y,不断更新y
{
if (mMax < p[i].y)
{
mMax = p[i].y;
ans ++;
}
}
printf("%d\n",ans);
}
return 0;
}
G.高精度poj 1131 (8进制小数转换为十进制)
solution one:
//package sunquan;
import java.math.*;
import java.util.*;
public class Main {
public static void main(String[] args) {
BigDecimal ans,base;
String str;
Scanner in=new Scanner(System.in);
while(in.hasNext())
{
str=in.nextLine();
ans=BigDecimal.ZERO;
base=BigDecimal.ONE;
for(int i=2;i<str.length();i++)
{
base=base.divide(BigDecimal.valueOf(8));
long x= (str.charAt(i)-'0');
ans=ans.add(base.multiply(BigDecimal.valueOf(x)));
}
System.out.println(str+" [8] = "+ans+" [10]");
}
}
}
solution two:
思路:高精度除法
8进制小数n=0.C1C2C3...Cn ;转化为十进制采用除法;
(1)首先我们先思考一下十进制的小数转十进制
ans=0.(C1+(C2+...)/10)/10
那么: ans=0.(C1+(C2+..)/8)/8
eg: 0.75=0.(7+5/8)/8
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
char str[100];
int base[4000];
int main()
{
int i,j,k,n,t,len;
while(scanf("%s",str)!=EOF)
{
memset(base,0,sizeof(base));
len=strlen(str);
for(t=0,i=len-1;i>=2;i--){
n=str[i]-'0';
for(k=j=0;j<t||n;j++,k++){
n=n*10+base[j];//将左边的一位放在前面,然后取头两位做除法
base[k]=n/8;
n%=8;
// cout<<base[k-1];
}
t=k;
//cout<<endl;
}
printf("%s [8] = 0.",str);
for(i=0;i<t;i++)
printf("%d",base[i]);
puts(" [10]");
}
return 0;
}
H.动态规划 poj 1062
//最短路径——Dijkstra算法
//此题的关键在于等级限制的处理,最好的办法是采用枚举,即假设酋长等级为5,等级限制为2,那么需要枚举等级从3~5,4~6,5~7
//从满足改等级范围的结点组成的子图中用Dijkstra来算出最短路径
//小结,通过枚举的方式可以消除一些图与图之间的限制
#include<iostream>
#include<cmath>
#define INF 200000000
#define MAX 101
using namespace std;
int map[MAX][MAX],lev[MAX],d[MAX],value[MAX];
bool within_lim[MAX],v[MAX];//within_lim为满足等级限制的标记数组
int lev_lim,n;
int dijkstra()//Dijkstra算法
{
int minimum = INF;
memset(v,0,sizeof(v));//清除所有点的标号
for(int i = 1;i <= n;++i)
d[i] = (i == 1 ? 0 : INF);//设d[0] = 0,其他d[i] = INF
for(int i = 1;i <= n;++i)//循环N次
{
int x = 0, m = INF;
for(int y = 1; y <= n;++y)
if(!v[y] && d[y] <= m && within_lim[y])//在所有未标号且满足等级限制的结点中,选出d值最小的结点x
{
x = y;
m = d[y];
}
v[x] = 1;//给结点x标记
for(int y = 1;y <= n;++y)//对于从x出发的所有边(x,y),更新d[y] = min{d[y], d[x] + map[x][y])
{
if(within_lim[y])//满足等级限制
d[y] = min(d[y],d[x] + map[x][y]);//更新d[y]值
}
}
for(int i = 1;i <= n;++i)
{
d[i] += value[i];//对于每个d[i]值,还需加上进入该结点的花费,再进行比较
if(d[i] < minimum) minimum = d[i];
}
return minimum;
}
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
cin >> lev_lim >> n;
for(int i = 0;i <= n;++i)
for(int j = 0;j <= n;++j)
map[i][j] = (i == j ? 0 : INF);//图的初始化,注意对角线初始化为0,从自己出发到自己的花费为0
for(int i = 1;i <= n;++i)
{
int t;
cin >> value[i] >> lev[i] >> t;
for(int j = 1;j <= t;++j)
{
int k;
cin >> k;
cin >> map[i][k];
}
}//建图完毕
int kinglev = lev[1];
int min_cost = INF,cost;
for(int i = 0;i <= lev_lim;++i)
{
memset(within_lim,0,sizeof(within_lim));//初始化标记数组
for(int j = 1;j <= n;++j)
if(lev[j] >= kinglev - lev_lim + i && lev[j] <= kinglev + i)//枚举等级允许范围的结点
within_lim[j] = 1;
cost = dijkstra();
if(cost < min_cost)
min_cost = cost;
}
cout << min_cost << endl;
return 0;
}