4.1 学习目标
- 了解常用的机器学习模型,并掌握机器学习模型的建模与调参流程
- 完成相应学习打卡任务
4.2 内容介绍
- 线性回归模型:
- 线性回归对于特征的要求;
- 处理长尾分布;
- 理解线性回归模型;
- 模型性能验证:
- 评价函数与目标函数;
- 交叉验证方法;
- 留一验证方法;
- 针对时间序列问题的验证;
- 绘制学习率曲线;
- 绘制验证曲线;
- 嵌入式特征选择:
- Lasso回归;
- Ridge回归;
- 决策树;
- 模型对比:
- 常用线性模型;
- 常用非线性模型;
- 模型调参:
- 贪心调参方法;
- 网格调参方法;
- 贝叶斯调参方法;
4.3 相关原理介绍与推荐
由于相关算法原理篇幅较长,本文推荐了一些博客与教材供初学者们进行学习。
4.3.1 线性回归模型
https://zhuanlan.zhihu.com/p/49480391
4.3.2 决策树模型
https://zhuanlan.zhihu.com/p/65304798
4.3.3 GBDT模型
https://zhuanlan.zhihu.com/p/45145899
4.3.4 XGBoost模型
https://zhuanlan.zhihu.com/p/86816771
4.3.5 LightGBM模型
https://zhuanlan.zhihu.com/p/89360721
4.3.6 推荐教材:
- 《机器学习》 https://book.douban.com/subject/26708119/
- 《统计学习方法》 https://book.douban.com/subject/10590856/
- 《Python大战机器学习》 https://book.douban.com/subject/26987890/
- 《面向机器学习的特征工程》 https://book.douban.com/subject/26826639/
- 《数据科学家访谈录》 https://book.douban.com/subject/30129410/
4.4 代码示例
此处不展开叙述。
补充:五折交叉验证
在使用训练集对参数进行训练的时候,经常会发现人们通常会将一整个训练集分为三个部分(比如mnist手写训练集)。一般分为:训练集(train_set),评估集(valid_set),测试集(test_set)这三个部分。这其实是为了保证训练效果而特意设置的。其中测试集很好理解,其实就是完全不参与训练的数据,仅仅用来观测测试效果的数据。而训练集和评估集则牵涉到下面的知识了。
因为在实际的训练中,训练的结果对于训练集的拟合程度通常还是挺好的(初始条件敏感),但是对于训练集之外的数据的拟合程度通常就不那么令人满意了。因此我们通常并不会把所有的数据集都拿来训练,而是分出一部分来(这一部分不参加训练)对训练集生成的参数进行测试,相对客观的判断这些参数对训练集之外的数据的符合程度。这种思想就称为交叉验证(Cross Validation)
但在事实上,由于我们并不具有预知未来的能力,五折交叉验证在某些与时间相关的数据集上反而反映了不真实的情况。通过2018年的二手车价格预测2017年的二手车价格,这显然是不合理的,因此我们还可以采用时间顺序对数据集进行分隔。在本例中,我们选用靠前时间的4/5样本当作训练集,靠后时间的1/5当作验证集,最终结果与五折交叉验证差距不大
- 用简单易懂的语言描述「过拟合 overfitting」? https://www.zhihu.com/question/32246256/answer/55320482
- 模型复杂度与模型的泛化能力 http://yangyingming.com/article/434/
- 正则化的直观理解 https://blog.csdn.net/jinping_shi/article/details/52433975
在过滤式和包裹式特征选择方法中,特征选择过程与学习器训练过程有明显的分别。而嵌入式特征选择在学习器训练过程中自动地进行特征选择。嵌入式选择最常用的是L1正则化与L2正则化。在对线性回归模型加入两种正则化方法后,他们分别变成了岭回归与Lasso回归。
L2正则化在拟合过程中通常都倾向于让权值尽可能小,最后构造一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,也在一定程度上避免了过拟合现象。可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』
L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。如下图,我们发现power与userd_time特征非常重要。
除此之外,决策树通过信息熵或GINI指数选择分裂节点时,优先选择的分裂特征也更加重要,这同样是一种特征选择的方法。XGBoost与LightGBM模型中的model_importance指标正是基于此计算的
在此我们介绍了三种常用的调参方法如下:
- 贪心算法 https://www.jianshu.com/p/ab89df9759c8
- 网格调参 https://blog.csdn.net/weixin_43172660/article/details/83032029
- 贝叶斯调参 https://blog.csdn.net/linxid/article/details/81189154