Langchain2 - Build a Chatbot

Langchain2 - Build a Chatbot 官方文档

概述

介绍一个如何设计和实现基于llm的聊天机器人的示例。这个聊天机器人将能够进行对话,并记住以前与聊天模型的交互。
请注意,我们构建的这个聊天机器人将只使用语言模型进行对话。还有其他几个相关的概念,你可能会寻找:

会话RAG:在外部数据源上启用聊天机器人体验
代理:建立一个可以采取行动的聊天机器人

import os
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv())

快速入门

首先,让我们学习如何单独使用语言模型。LangChain支持许多不同的语言模型,您可以互换使用-选择您想要使用的下面的一个!

from langchain_openai import ChatOpenAI

model = ChatOpenAI(model="gpt-4o-mini")
from langchain_core.messages import HumanMessage

model.invoke([HumanMessage(content="Hi! I'm Bob")])
AIMessage(content='Hi Bob! How can I assist you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 10, 'prompt_tokens': 11, 'total_tokens': 21, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_5154047bf2', 'finish_reason': 'stop', 'logprobs': None}, id='run-1b12bdd2-e2d4-4d83-96d6-6438199ade45-0', usage_metadata={'input_tokens': 11, 'output_tokens': 10, 'total_tokens': 21, 'input_token_details': {}, 'output_token_details': {}})
model.invoke([HumanMessage(content="What's my name?")])
AIMessage(content="I'm sorry, but I don't have access to personal information about you. I can only provide information based on the context of our conversation. How can I assist you today?", additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 34, 'prompt_tokens': 11, 'total_tokens': 45, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_5154047bf2', 'finish_reason': 'stop', 'logprobs': None}, id='run-c31102a8-dedb-4b1b-941f-1d199600c63b-0', usage_metadata={'input_tokens': 11, 'output_tokens': 34, 'total_tokens': 45, 'input_token_details': {}, 'output_token_details': {}})
from langchain_core.messages import AIMessage

model.invoke(
    [
        HumanMessage(content="Hi! I'm Bob"),
        AIMessage(content="Hello Bob! How can I assist you today?"),
        HumanMessage(content="What's my name?"),
    ]
)
AIMessage(content='Your name is Bob! How can I help you today?', additional_kwargs={'refusal': None}, response_metadata={'token_usage': {'completion_tokens': 12, 'prompt_tokens': 33, 'total_tokens': 45, 'completion_tokens_details': None, 'prompt_tokens_details': None}, 'model_name': 'gpt-4o-mini-2024-07-18', 'system_fingerprint': 'fp_5154047bf2', 'finish_reason': 'stop', 'logprobs': None}, id='run-0e83d1f9-c38e-48f3-a6d9-c9cb033f5517-0', usage_metadata={'input_tokens': 33, 'output_tokens': 12, 'total_tokens': 45, 'input_token_details': {}, 'output_token_details': {}})

消息持久性

LangGraph实现了一个内置的持久化层,使其成为支持多个会话回合的聊天应用程序的理想选择。
将聊天模型封装在最小的LangGraph应用程序中允许我们自动保存消息历史记录,从而简化了多回合应用程序的开发。
LangGraph附带了一个简单的内存检查指针,我们将在下面使用它。请参阅其文档了解更多细节,包括如何使用不同的持久性后端(例如,SQLite或Postgres)。

from langgraph.checkpoint.memory import MemorySaver
from langgraph.graph import START, MessagesState, StateGraph

# Define a new graph
workflow = StateGraph(state_schema=MessagesState)


# Define the function that calls the model
def call_model(state: MessagesState):
    response = model.invoke(state["messages"])
    return {
   
   "messages": response}


# Define the (single) node in the graph
workflow.add_edge(START, "model")
workflow.add_node("model", call_model)

# Add memory
memory = MemorySaver()
app = workflow.compile(checkpointer=memory)

对于异步支持,将call_model节点更新为async函数,并在调用应用程序时使用.ainvoke:

Async function for node:

async def call_model(state: MessagesState):
response = await model.ainvoke(state[“messages”])
return {“messages”: response}

Define graph as before:

workflow = StateGraph(state_schema=MessagesState)
workflow.add_edge(START, “model”)
workflow.add_node(“model”, call_model)
app = workflow.compile(checkpointer=MemorySaver())

Async invocation:

output = await app.ainvoke({“messages”: input_messages}, config)
output[“messages”][-1].pretty_print()

现在,我们需要创建一个配置,每次都将其传递给可运行对象。该配置包含的信息不是直接输入的一部分,但仍然很有用。在本例中,我们希望包含一个thread_id。这应该看起来像:

config 
LangChain4j 是一个专为 Java 和 Kotlin 开发者设计的类 LangChain 框架,用于与大型语言模型(LLM)进行交互。它提供了类似 PythonLangChain 的功能,包括提示模板、链式调用、嵌入模型支持、向量数据库集成等。 --- ## 📘 LangChain4j 教程 ### 1. 环境准备 #### 添加依赖(以 Maven 为例) ```xml <dependency> <groupId>dev.langchain4j</groupId> <artifactId>langchain4j-core</artifactId> <version>0.26.0</version> </dependency> <!-- OpenAI 模型 --> <dependency> <groupId>dev.langchain4j</groupId> <artifactId>langchain4j-openai</artifactId> <version>0.26.0</version> </dependency> <!-- 嵌入模型支持 --> <dependency> <groupId>dev.langchain4j</groupId> <artifactId>langchain4j-embedding-all-minilm-l6-v2</artifactId> <version>0.26.0</version> </dependency> <!-- 向量存储 --> <dependency> <groupId>dev.langchain4j</groupId> <artifactId>langchain4j-in-memory-embedding-store</artifactId> <version>0.26.0</version> </dependency> ``` 确保你已经在 [OpenAI](https://platform.openai.com/) 注册并获取了 API Key,并将其设置为环境变量或配置项。 --- ### 2. 快速开始:基本 LLM 调用 ```java import dev.langchain4j.model.chat.ChatLanguageModel; import dev.langchain4j.model.openai.OpenAiChatModel; public class BasicLLMExample { public static void main(String[] args) { ChatLanguageModel model = new OpenAiChatModel(System.getenv("OPENAI_API_KEY")); String response = model.generate("你好,请介绍一下你自己。"); System.out.println(response); } } ``` --- ### 3. 提示模板(Prompt Template) LangChain4j 支持使用模板来构造提示内容: ```java import dev.langchain4j.data.message.AiMessage; import dev.langchain4j.model.chat.ChatLanguageModel; import dev.langchain4j.model.openai.OpenAiChatModel; import dev.langchain4j.prompt.Prompt; import dev.langchain4j.prompt.PromptTemplate; import java.util.HashMap; import java.util.Map; public class PromptTemplateExample { public static void main(String[] args) { String template = "请根据以下信息写一段介绍:姓名是{name},职业是{profession}。"; PromptTemplate promptTemplate = PromptTemplate.from(template); Map<String, Object> variables = new HashMap<>(); variables.put("name", "张三"); variables.put("profession", "软件工程师"); Prompt prompt = promptTemplate.apply(variables); ChatLanguageModel model = new OpenAiChatModel(System.getenv("OPENAI_API_KEY")); AiMessage response = model.generate(prompt.messages()); System.out.println(response.content().text()); } } ``` --- ### 4. 链式调用(Chaining) 你可以将多个组件串联成一个链: ```java import dev.langchain4j.chain.ConversationalRetrievalChain; import dev.langchain4j.data.document.Document; import dev.langchain4j.data.document.loader.FileSystemDocumentLoader; import dev.langchain4j.data.segment.TextSegment; import dev.langchain4j.model.embedding.AllMiniLmL6V2EmbeddingModel; import dev.langchain4j.model.openai.OpenAiChatModel; import dev.langchain4j.retriever.EmbeddingStoreRetriever; import dev.langchain4j.store.embedding.EmbeddingStore; import dev.langchain4j.store.embedding.inmemory.InMemoryEmbeddingStore; import java.net.URL; import java.util.List; public class ChainExample { public static void main(String[] args) { // 加载文档 URL resource = ChainExample.class.getClassLoader().getResource("test.txt"); Document document = FileSystemDocumentLoader.loadDocument(resource); // 分段 List<TextSegment> segments = TextSegment.split(document.content(), 100); // 嵌入模型 AllMiniLmL6V2EmbeddingModel embeddingModel = new AllMiniLmL6V2EmbeddingModel(); // 计算嵌入 List<Embedding> embeddings = embeddingModel.embedAll(segments).content(); // 存储到内存中 EmbeddingStore<TextSegment> store = new InMemoryEmbeddingStore<>(); for (int i = 0; i < segments.size(); i++) { store.add(embeddings.get(i), segments.get(i)); } // 创建检索器 EmbeddingStoreRetriever<TextSegment> retriever = EmbeddingStoreRetriever.from(store, embeddingModel, 2); // 创建 LLM OpenAiChatModel chatModel = new OpenAiChatModel(System.getenv("OPENAI_API_KEY")); // 创建链 ConversationalRetrievalChain<TextSegment> chain = ConversationalRetrievalChain.from(chatModel, retriever); // 使用链提问 String answer = chain.invoke("量子计算是什么?"); System.out.println(answer); } } ``` --- ### 5. 内存管理(Memory) LangChain4j 支持对话记忆管理,可以保存历史记录: ```java import dev.langchain4j.memory.InMemoryChatMemory; import dev.langchain4j.model.chat.ChatLanguageModel; import dev.langchain4j.model.openai.OpenAiChatModel; import dev.langchain4j.service.AiServices; import dev.langchain4j.service.MemoryId; import dev.langchain4j.service.SystemMessage; public interface ChatBot { @SystemMessage("你是一个有帮助的助手。") String chat(@MemoryId int memoryId, String userMessage); } public class MemoryExample { public static void main(String[] args) { ChatLanguageModel model = new OpenAiChatModel(System.getenv("OPENAI_API_KEY")); ChatBot chatBot = AiServices.builder(ChatBot.class) .chatLanguageModel(model) .chatMemoryProvider(memoryId -> new InMemoryChatMemory()) .build(); int memoryId = 1; System.out.println(chatBot.chat(memoryId, "你好!")); System.out.println(chatBot.chat(memoryId, "我刚才说了什么?")); } } ``` --- ## ✅ 总结 LangChain4j 是 Java/Kotlin 开发者构建基于 LLM 应用程序的强大工具,主要特性包括: - **Prompt Templates**:构造结构化提示 - **Chains**:组合多个 AI 步骤 - **Embeddings & Retrieval**:支持文本嵌入和向量搜索 - **Memory**:支持会话记忆 - **Integration**:支持多种 LLM 提供商(如 OpenAI、Anthropic) --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值