Numpy中的随机数

1、常用随机数函数

random.rand():根据给定维度生成[0,1)之间的数据

random.randn():根据给定维度(不给维度时为单个数),产生符合标准正态分布的随机数

random.normal():产生可定义均值和标准差的正态分布随机数

random.randint():返回给定维度的随机整数

random.random()\random.sample:返回给定维度的[0,1)之间的随机数

random.choice():从给定的一维数组中生成随机数

random.seed():当设置相同的seed,每次生成的随机数相同,不设置seed,则每次会生成不同的随机数,数字一般可随意设置

numpy random官方参考文档:https://docs.scipy.org/doc/numpy/reference/routines.random.html

2、示例

#1.生成随机正态分布图
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
x=3.5*np.random.randn(500)+6 #产生满足正态分布(均值6,方差3.5)的有500个随机数的一维数组
plt.figure() #新建figure对象
plt.hist(x) #生成直方图
plt.show() #显示图形
sns.distplot(x)#打印正态分布曲线

 

#2.seed的使用
np.random.seed(30)#当seed一样,生成的随机数是一样的
y=np.random.rand(500)
plt.hist(y)
plt.show()
np.random.seed(30)#生成随机数的地方都需要设置,数字可随意
z=np.random.random(500)
plt.hist(z)
plt.show()

#3.其他常用函数
print (np.random.random is np.random.sample)#这两种类型是等价的
print (np.random.random)#random的实际类型就是sample
print (np.random.choice(5,3))#产生由0~4产生的数组,并随机挑选3个显示,每取一次数字,数字还会被放回
print (np.random.rand(10)) #生成[0,1)之间的随机数
print (np.random.randn(10))#产生符合标准正态分布的随机数
True
<built-in method random_sample of mtrand.RandomState object at 0x10f7ff8b8>
[4 0 1]
[0.94936764 0.73113029 0.48732159 0.29366555 0.99177743 0.08792783
 0.81796664 0.86107705 0.65270547 0.91350941]
[-0.95933689 -1.05804151  1.46924042  1.27206488 -1.65963655 -0.26773304
 -0.18523583 -0.14499593 -1.29683753 -0.02781812]

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值