【AI编译优化】谈谈 tvm ansor

本文探讨了AI编译优化中的TVM和Ansor。Ansor通过hierarchical search space、program sampling和performance fine-tuning解决搜索空间、效率和资源分配问题。它采用sketch generation和random annotation构建大的搜索空间,再用evolutionary search进行性能优化,从而在自动编译优化领域取得突破。
摘要由CSDN通过智能技术生成

2.1 auto tvm
做法是使用 template-guided 进行搜索,对于每个 op 使用 templates 去定义搜索空间。

2.2 halide auto-scheduler
做法是基于 sequential construction 进行搜索,使用 beam search 算法搜索顺序生成。说一下 beam search 算法,beam search 是所谓的 束搜索,是对 greedy search(贪心搜索)的一个改进算,相对 greedy search 扩大了搜索空间,但远远不及穷举搜索指数级的搜索空间,是二者的一个折中方案。
在这里插入图片描述

halide auto-scheduler 的缺点是:

(1)因为它是顺序生成的,对于中间的算子优化来说是不连续不完整的,因此 cost model 没办法进行准确的预测,导致了错误的累积;
(2)和 auto tvm 一样,搜索空间也是受限的;

通过对以上两个调度搜索算法的讨论,得到三个痛点:(1)怎么样能够自动的获取一个很大的搜索空间;(2)如何让搜索更加的高效;(3)对于这么多的搜索任务我们怎么样去分配资源。对于这三个痛点,ansor 的解法是:对于(1)采用 hierarchical search space;对于(2)采用 sample complete programs an

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值