【bzoj2751】【HAOI2012】【容易题】【数学】

Description


为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下:
有一个数列A已知对于所有的A[i]都是1~n的自然数,并且知道对于一些A[i]不能取哪些值,我们定义一个数列的积为该数列所有元素的乘积,要求你求出所有可能的数列的积的和 mod 1000000007的值,是不是很简单呢?呵呵!

Input


第一行三个整数n,m,k分别表示数列元素的取值范围,数列元素个数,以及已知的限制条数。
接下来k行,每行两个正整数x,y表示A[x]的值不能是y。

Output

一行一个整数表示所有可能的数列的积的和对1000000007取模后的结果。如果一个合法的数列都没有,答案输出0。

Sample Input

3 4 5
1 1
1 1
2 2
2 3
4 3

Sample Output

90
样例解释
A[1]不能取1
A[2]不能去2、3
A[4]不能取3
所以可能的数列有以下12种
数列 积
2 1 1 1 2
2 1 1 2 4
2 1 2 1 4
2 1 2 2 8
2 1 3 1 6
2 1 3 2 12
3 1 1 1 3
3 1 1 2 6
3 1 2 1 6
3 1 2 2 12
3 1 3 1 9
3 1 3 2 18

HINT

数据范围

30%的数据n<=4,m<=10,k<=10

另有20%的数据k=0

70%的数据n<=1000,m<=1000,k<=1000

100%的数据 n<=109,m<=109,k<=105,1<=y<=n,1<=x<=m

题解:首先变换一下式子,可以发现答案就是每个位置能选的数的和乘起来。

然后排个序去重统计一下就好了。

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#define P 1000000007
using namespace std;
struct use{int p,v;}s[100010];
long long ans(1);
int n,m,k,t,ss,temp;
bool cmp(use a,use b){if (a.p==b.p) return a.v<b.v;else return a.p<b.p;}
int power(long long a,long long b){
   long long ans(1);
   for(int i=b;i;i>>=1,(a*=a)%=P) if(i&1) (ans*=a)%=P;
   return ans;
}
int main(){
    scanf("%d%d%d",&n,&m,&k);t=m;
    for (int i=1;i<=k;i++) scanf("%d%d",&s[i].p,&s[i].v);
    sort(s+1,s+k+1,cmp); ss=((long long)n*(n+1)/2)%P;temp=ss;
    for (int i=1;i<=k;i++){
       if (i!=1&&s[i].p!=s[i-1].p){(ans*=temp)%=P;temp=ss;t--;}
       if (s[i].v!=s[i-1].v||s[i].p!=s[i-1].p){temp=(temp-s[i].v+P)%P;}
     }
    t--;(ans*=temp)%=P;(ans*=power(ss,t))%=P;cout<<ans<<endl;
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值