【bzoj1016】【JSOI2008】【最小生成树计数】【dfs+最小生成树】

Description

现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生成树可能很多,所以你只需要输出方案数对31011的模就可以了。

Input

第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,000。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。

Output

输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。

Sample Input

4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1

Sample Output

8
题解:首先一种权值的边在最小生成树中的作用是一样的。
即控制的点的数量是一样的。
所以我们先做一遍最小生成树。统计一下每中权值的边有多少条,控制几个点。
然后对于每种权值的边。我们dfs一下看看有多少种等价的方案。
然后用乘起来即可。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define P 31011
using namespace std;
int n,m,cnt,tt,ans(1),temp,fa[505];
struct use{int st,en,v;}e[10005];
struct use2{int l,r,t;}s[10005];
bool cmp(use a,use b){return a.v<b.v;}
int find(int x){return x==fa[x]?x:find(fa[x]);}
void dfs(int k,int x,int pp){
     if(x==s[k].r+1){if(pp==s[k].t)temp++;return;}
     int p=find(e[x].st),q=find(e[x].en);
     if(p!=q){fa[p]=q;dfs(k,x+1,pp+1);fa[p]=p;fa[q]=q;}
     dfs(k,x+1,pp);
}
int main(){
    scanf("%d%d",&n,&m);
    for (int i=1;i<=m;i++){scanf("%d%d%d",&e[i].st,&e[i].en,&e[i].v);}
    for(int i=1;i<=n;i++)fa[i]=i;sort(e+1,e+m+1,cmp);
    for(int i=1;i<=m;i++){
        if(e[i].v!=e[i-1].v){s[++cnt].l=i;s[cnt-1].r=i-1;}
        int p=find(e[i].st),q=find(e[i].en);
        if(p!=q){fa[p]=q;s[cnt].t++;tt++;}
    }
    s[cnt].r=m;if(tt!=n-1){printf("0");return 0;}
    for(int i=1;i<=n;i++)fa[i]=i;
    for(int i=1;i<=cnt;i++){
        temp=0;dfs(i,s[i].l,0);(ans*=temp)%=P;//cout<<sum<<endl;
        for(int j=s[i].l;j<=s[i].r;j++){
            int p=find(e[j].st),q=find(e[j].en);
            if(p!=q)fa[p]=q;
        }
    }
    printf("%d",ans);
}

题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输格式 输一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求来,然后将其看作是一个有权值的,问题就转化为了在这个中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值