【bzoj1926】【sdoi2010】【粟粟的书架】【二分+主席树】

Description

Input

第一行是三个正整数R, C, M。 接下来是一个 R行C 列的矩阵,从上到下、从左向右依次给出了每本书的 页数Pi,j。 接下来 M行,第 i 行给出正整数x1i, y1i, x2i, y2i, Hi,表示第i 天的指定区域 是﹙x1i, y1i﹚与﹙x2i, y2i﹚间的矩形,总页数之和要求不低于 Hi。 保证 1≤x1i≤x2i≤R,1≤y1i≤y2i≤C。

Output

有M行,第i 行回答粟粟在第 i 天时为摘到苹果至少需要 拿取多少本书。如果即使取走所有书都无法摘到苹果,则在该行输出“Poor QLW” (不含引号)。

Sample Input

5 5 7
14 15 9 26 53
58 9 7 9 32
38 46 26 43 38
32 7 9 50 28
8 41 9 7 17
1 2 5 3 139
3 1 5 5 399
3 3 4 5 91
4 1 4 1 33
1 3 5 4 185
3 3 4 3 23
3 1 3 3 108

Sample Output

6
15
2
Poor QLW
9
1
3

HINT

对于 10%的数据,满足 R, C≤10; 
对于 20%的数据,满足 R, C≤40; 
对于 50%的数据,满足 R, C≤200,M≤200,000; 
另有 50%的数据,满足 R=1,C≤500,000,M≤20,000; 
对于 100%的数据,满足 1≤Pi,j≤1,000,1≤Hi≤2,000,000,000。

题解:

这个题其实是两个题

对于第一问(R,C<=200);

   预处理f[x][y][k],s[x][y][k].表示从(1,1)到(x,y)中大于等于k的数的和与大于等于k的数的个数。

   然后二分最小的数即可。

   注意最后如果最小的数有多个需要稍微调整一下答案。

对于第二问(R=1):

   我们还是二分最小数。

   判断就变成了询问一段区间内大于等于x的数的和以及它们的个数。

   显然主席树可以处理这个。

 代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#define N 210
#define M 1010
#define C 500005
using namespace std;
int f[N][N][M],s[N][N][M];
int n,m,x1,y1,x2,y2,h,q,v[M],a[N][N];
int c[C],ls[C*20],rs[C*20],sum[C*20],size[C*20],root[C],sz;
void insert(int x,int l,int r,int &y,int p){
  y=++sz;size[y]=size[x]+1;sum[y]=sum[x]+p;
  ls[y]=ls[x];rs[y]=rs[x];
  if (l==r) return;
  int mid=(l+r)>>1;
  if (p<=mid) insert(ls[x],l,mid,ls[y],p);
  else insert(rs[x],mid+1,r,rs[y],p);
}
int query1(int x,int l,int r,int y,int ll,int rr){
  if (l==ll&&r==rr)return sum[y]-sum[x];
  int mid=(l+r)>>1;
  if (rr<=mid) return query1(ls[x],l,mid,ls[y],ll,rr);
  else if (ll>mid) return query1(rs[x],mid+1,r,rs[y],ll,rr);
  else return query1(ls[x],l,mid,ls[y],ll,mid)+query1(rs[x],mid+1,r,rs[y],mid+1,rr);
}
int query2(int x,int l,int r,int y,int ll,int rr){
  if (l==ll&&r==rr)return size[y]-size[x];
  int mid=(l+r)>>1;
  if (rr<=mid) return query2(ls[x],l,mid,ls[y],ll,rr);
  else if (ll>mid) return query2(rs[x],mid+1,r,rs[y],ll,rr);
  else return query2(ls[x],l,mid,ls[y],ll,mid)+query2(rs[x],mid+1,r,rs[y],mid+1,rr);
}
int cal(int k,int x1,int y1,int x2,int y2){
  return f[x2][y2][k]-f[x1-1][y2][k]-f[x2][y1-1][k]+f[x1-1][y1-1][k];
}
int get(int k,int x1,int y1,int x2,int y2){
  return s[x2][y2][k]-s[x1-1][y2][k]-s[x2][y1-1][k]+s[x1-1][y1-1][k];
}
void pre(){
  for (int i=1;i<=n;i++)
    for (int j=1;j<=m;j++)
      scanf("%d",&a[i][j]),v[a[i][j]]++;
  for (int i=1;i<=n;i++)
	for (int j=1;j<=m;j++){
	  for (int k=1;k<=1000;k++)
	    s[i][j][k]=s[i][j-1][k]+s[i-1][j][k]-s[i-1][j-1][k];
      s[i][j][a[i][j]]++;
    }	
  for (int i=1;i<=n;i++)
    for (int j=1;j<=m;j++)
      for (int k=1000;k>=1;k--){
        f[i][j][k]=f[i][j][k+1]+k*s[i][j][k];
        s[i][j][k]+=s[i][j][k+1];
	  }
}
int main(){
  scanf("%d%d%d",&n,&m,&q);
  if (n<=200&&m<=200){
  	pre();
    while (q--){
      scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&h);
	  int l=1,r=1000,num=0,t=-1;
	  while (l<=r){
	    int mid=(l+r)>>1;
	    int temp=cal(mid,x1,y1,x2,y2);
	    if (temp>=h){num=temp;t=mid;l=mid+1;}
	    else r=mid-1;
	  }
	  if (t==-1){printf("Poor QLW\n");continue;}
	  int tot=get(t,x1,y1,x2,y2),p=v[t];
	  while (p&&num-t>=h){p--;num-=t;tot--;}
	  printf("%d\n",tot); 
    }
  }
  else{
    n=m;
    for (int i=1;i<=n;i++) scanf("%d",&c[i]),v[c[i]]++;
    for (int i=1;i<=n;i++) insert(root[i-1],1,1000,root[i],c[i]); 
    while (q--){
      scanf("%d%d%d%d%d",&x1,&y1,&x2,&y2,&h);
      x1=y1;x2=y2;
      int l=1,r=1000,t=-1,num(0);
      while (l<=r){
        int mid=(l+r)>>1;
		int temp=query1(root[x1-1],1,1000,root[x2],mid,1000);
		if (temp>=h){t=mid;num=temp;l=mid+1;}
		else r=mid-1; 
      }
      if (t==-1){printf("Poor QLW\n");continue;}
	  int tot=query2(root[x1-1],1,1000,root[x2],t,1000),p=v[t];
	  while (p&&num-t>=h){p--;num-=t;tot--;}
	  printf("%d\n",tot); 
    }
  }
}


©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页