[BZOJ1926][Sdoi2010]粟粟的书架(二分答案+前缀和+主席树)

考虑一种暴力做法:把给定的子矩形内的所有书取出来,按照厚度从大到小排序,然后贪心从左往右考虑,如果排序之后前 k 本书的厚度之和小于H,前 k+1 本书的厚度大于等于 H ,那么询问的结果就是k+1。否则如果给定子矩形内所有书的厚度之和小于 H ,那么无解。
而此题从数据点上,实际是两个问题:
1、一个R×C的矩形,每次询问一个子矩形的结果, R,C200
2、一个 C 个数的序列,每次询问一个区间的结果,C5×105

1:二维前缀和+二分答案。

cnt[i][j][k] 表示行号在 [1,i] ,列号在 [1,j] ,厚度大于等于 k 的书的数目
sum[i][j][k]表示行号在 [1,i] ,列号在 [1,j] ,厚度大于等于 k 的书的厚度之和
每一次询问二分最小厚度,求出值t,表示满足条件的情况下,最大的最小厚度。
然而由于有相同厚度,因此还要计算出厚度为 t 的书有多少本没有用上
也就是,询问结果为:

cnts(x1,y1,x2,y2,t)sums(x1,y1,x2,y2,t)Ht

其中 cnts(x1,y1,x2,y2,t) 表示左上角为 (x1,y1) ,右下角为 (x2,y2) 的矩形内厚度大于等于 t 的书的数量(可以用cnt得出), sums 同理。

2:主席树上二分。

主席树的每个节点上记录:
cnt :该前缀版本中,这个节点对应厚度区间内的书的数量。
sum :该前缀版本中,这个节点对应厚度区间内的书的厚度之和。
如果一个询问区间内所有书的厚度之和小于 H ,那么无解。
否则在主席树上二分。设query(l,r,h)表示询问 [y1,y2] 中,用厚度为 [l,r] 的书,达到 H 的高度至少需要多少本书。
分情况考虑:
1、l=r时:

query(l,r,h)=hl

2、 lr ,设 mid=l+r2 ri 等于该询问中,厚度为 [mid+1,r] 的书的厚度之和(可以在主席树上得到),当 h>ri 时:
query(l,r,h)=query(l,mid,hri)+delta

其中 delta 等于该询问中,厚度为 [mid+1,r] 的书的数量,也可以在主席树上得到。
3、否则:
query(l,r,h)=query(mid+1,r,h)

注意卡空间……
代码:

#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
inline int read() {
    int res = 0; bool bo = 0; char c;
    while (((c = getchar()) < '0' || c > '9') && c != '-');
    if (c == '-') bo = 1; else res = c - 48;
    while ((c = getchar()) >= '0' && c <= '9')
        res = (res << 3) + (res << 1) + (c - 48);
    return bo ? ~res + 1 : res;
}
const int Cyx = 205, Pyz = 1005, Lpf = 5e5 + 5, LpfLogLpf = 1e7 + 5;
int n, m, q, orz[Cyx][Cyx], sum[Cyx][Cyx][Pyz], cnt[Cyx][Cyx][Pyz],
QAQ, rt[Lpf], Sum[Lpf];
struct cyx {
    int lc, rc, cnt, sum;
} T[LpfLogLpf];
void ins(int y, int &x, int l, int r, int p) {
    T[x = ++QAQ] = T[y]; T[x].cnt++; T[x].sum += p; if (l == r) return;
    int mid = l + r >> 1;
    if (p <= mid) ins(T[y].lc, T[x].lc, l, mid, p);
    else ins(T[y].rc, T[x].rc, mid + 1, r, p);
}
int OrzDalao(int l, int r, int x, int y, int k) {
    return sum[r][y][k] - sum[l - 1][y][k] -
        sum[r][x - 1][k] + sum[l - 1][x - 1][k];
}
int OrzCyx(int l, int r, int x, int y, int k) {
    return cnt[r][y][k] - cnt[l - 1][y][k] -
        cnt[r][x - 1][k] + cnt[l - 1][x - 1][k];
}
int query(int l, int r, int h, int p1, int p2) {
    if (l == r) return h / l + (h % l > 0);
    int mid = l + r >> 1, ri = T[T[p2].rc].sum - T[T[p1].rc].sum;
    if (h > ri) return query(l, mid, h - ri, T[p1].lc, T[p2].lc)
        + T[T[p2].rc].cnt - T[T[p1].rc].cnt;
    else return query(mid + 1, r, h, T[p1].rc, T[p2].rc);
}
int main() {
    int i, j, k; n = read(); m = read(); q = read(); if (n > 1) {
        for (i = 1; i <= n; i++) for (j = 1; j <= m; j++)
            orz[i][j] = read();
        for (i = 1; i <= n; i++) for (j = 1; j <= m; j++)
        for (k = 1; k <= 1000; k++) {
            cnt[i][j][k] = cnt[i - 1][j][k] + cnt[i][j - 1][k]
                - cnt[i - 1][j - 1][k] + (orz[i][j] >= k);
            sum[i][j][k] = sum[i - 1][j][k] + sum[i][j - 1][k]
                - sum[i - 1][j - 1][k] + (orz[i][j] >= k ? orz[i][j] : 0);
        }
        int l, r, x, y, h; while (q--) {
            l = read(); x = read(); r = read(); y = read(); h = read();
            int L = 1, R = 1000; while (L <= R) {
                int mid = L + R >> 1;
                if (OrzDalao(l, r, x, y, mid) >= h) L = mid + 1;
                else R = mid - 1;
            }
            if (!R) {printf("Poor QLW\n"); continue;}
            int maxd = OrzDalao(l, r, x, y, R), delta = (maxd - h) / R;
            printf("%d\n", OrzCyx(l, r, x, y, R) - delta);
        }
        return 0;
    }
    for (i = 1; i <= m; i++) k = read(), ins(rt[i - 1], rt[i], 1, 1000, k),
        Sum[i] = Sum[i - 1] + k;
    int l, r, h; while (q--) {
        read(); l = read(); read(); r = read(); h = read();
        if (Sum[r] - Sum[l - 1] < h) {printf("Poor QLW\n"); continue;}
        printf("%d\n", query(1, 1000, h, rt[l - 1], rt[r]));
    }
    return 0;
}
©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页