【bzoj4552】【Tjoi2016&Heoi2016】【排序】【线段树】

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/sunshinezff/article/details/51433613

Description

在2016年,佳媛姐姐喜欢上了数字序列。因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题
,需要你来帮助他。这个难题是这样子的:给出一个1到n的全排列,现在对这个全排列序列进行m次局部排序,排
序分为两种:1:(0,l,r)表示将区间[l,r]的数字升序排序2:(1,l,r)表示将区间[l,r]的数字降序排序最后询问第q
位置上的数字。

Input

输入数据的第一行为两个整数n和m。n表示序列的长度,m表示局部排序的次数。1 <= n, m <= 10^5第二行为n个整
数,表示1到n的一个全排列。接下来输入m行,每一行有三个整数op, l, r, op为0代表升序排序,op为1代表降序
排序, l, r 表示排序的区间。最后输入一个整数q,q表示排序完之后询问的位置, 1 <= q <= n。1 <= n <= 10^5
,1 <= m <= 10^5

Output

 输出数据仅有一行,一个整数,表示按照顺序将全部的部分排序结束后第q位置上的数字。

Sample Input

6 3
1 6 2 5 3 4
0 1 4
1 3 6
0 2 4
3

Sample Output

5
题解:
首先二分答案。
那么只用判断这个数是否合法即可。
设这个数为x
那么可以把这个序列中比x大的数记为1,比x小的数记为-1,和x相等的数记为0.
最后只用判断q位置上的数是不是0即可.
维护一下序列中-1,0,1的个数,那显然操作可以用线段树处理.
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#define N 100010
using namespace std;
int a[N],ans,n,l,r,q,m,v[N],p[N<<2],sum;
struct seg{int s0,s1,s2;}t[N<<2];
struct use{int k,l,r;}c[N];
seg update(seg a,seg b){
  seg c;
  c.s0=a.s0+b.s0;
  c.s1=a.s1+b.s1;
  c.s2=a.s2+b.s2;
  return c;
}
void build(int k,int l,int r){
  int mid=(l+r)>>1;
  if (l==r){
    if (v[l]==0) t[k].s0++;
    if (v[l]==1) t[k].s1++;
    if (v[l]==2) t[k].s2++;
    return; 
  } 
  build(k<<1,l,mid);
  build(k<<1|1,mid+1,r);
  t[k]=update(t[k<<1],t[k<<1|1]); 
}
void paint(int k,int l,int r,int v){
   if (v==0){t[k].s0=r-l+1;t[k].s1=t[k].s2=0;}
   if (v==1){t[k].s1=r-l+1;t[k].s0=t[k].s2=0;}
   if (v==2){t[k].s2=r-l+1;t[k].s0=t[k].s1=0;}
   p[k]=v; 
}
void pushdown(int k,int l,int r){
  int mid=(l+r)>>1;
  paint(k<<1,l,mid,p[k]);
  paint(k<<1|1,mid+1,r,p[k]);
  p[k]=-1;
}
seg query(int k,int l,int r,int ll,int rr){
  int mid=(l+r)>>1;
  if (ll==l&&r==rr){return t[k];}
  if (p[k]!=-1) pushdown(k,l,r);
  if (rr<=mid) return query(k<<1,l,mid,ll,rr);
  else if (mid<ll) return query(k<<1|1,mid+1,r,ll,rr);
  else return update(query(k<<1,l,mid,ll,mid),query(k<<1|1,mid+1,r,mid+1,rr)); 
}
void change(int k,int l,int r,int ll,int rr,int v){
  int mid=(l+r)>>1;
  if (ll<=l&&r<=rr){paint(k,l,r,v);return;} 
  if (p[k]!=-1) pushdown(k,l,r);
  if (ll<=mid) change(k<<1,l,mid,ll,rr,v);
  if (mid<rr) change(k<<1|1,mid+1,r,ll,rr,v);
  t[k]=update(t[k<<1],t[k<<1|1]); 
}
int judge(int x){
  for (int i=1;i<=n;i++)
    if (a[i]<x) v[i]=0;
    else if (a[i]==x) v[i]=1;
    else v[i]=2;
  for (int i=1;i<=(n<<2);i++)
     t[i].s0=t[i].s1=t[i].s2=0,p[i]=-1;
  build(1,1,n);
  for (int i=1;i<=m;i++){
    seg tt=query(1,1,n,c[i].l,c[i].r);
    //cout<<tt.s0<<' '<<tt.s1<<' '<<tt.s2<<endl; 
    if (c[i].k==0){
      int a=c[i].l+tt.s0-1,b=a+tt.s1;
      if (tt.s0) change(1,1,n,c[i].l,a,0);
      //cout<<a+1<<' '<<b<<endl;
      if (tt.s1) change(1,1,n,a+1,b,1);
      if (tt.s2) change(1,1,n,b+1,c[i].r,2); 
    }
    else{
      int a=c[i].l+tt.s2-1,b=a+tt.s1;
      if (tt.s2) change(1,1,n,c[i].l,a,2);
      if (tt.s1) change(1,1,n,a+1,b,1);
      if (tt.s0) change(1,1,n,b+1,c[i].r,0);    
    } 
  }
  seg tt=query(1,1,n,q,q);
  if (tt.s0) return 0;
  if (tt.s1) return 1;
  if (tt.s2) return 2; 
}
int main(){
   scanf("%d%d",&n,&m);
   for (int i=1;i<=n;i++) scanf("%d",&a[i]);
   for (int i=1;i<=m;i++) scanf("%d%d%d",&c[i].k,&c[i].l,&c[i].r);
   scanf("%d",&q);l=1;r=n;
   //cout<<judge(5)<<endl;
   while (l<=r){
     //cout<<l<<' '<<r<<endl;
     int mid=(l+r)>>1;
     int t=judge(mid); 
     if (t==2) l=mid+1;
     else if (t==1) {ans=mid;break;}
     else r=mid-1;
   }
   cout<<ans<<endl;
} 


展开阅读全文

没有更多推荐了,返回首页