Vision Transformer (ViT) 核心原理详解与应用解析

一、引言

1. 视觉模型的发展背景

近年来,计算机视觉领域的进步主要得益于**卷积神经网络(CNN)**的快速发展。自AlexNet在2012年通过ImageNet大赛展示其强大性能以来,CNN成为了图像分类、目标检测、语义分割等视觉任务中的主流模型架构。诸如VGG、ResNet等深度网络的出现,进一步推动了视觉任务的准确性和效率。

然而,尽管CNN在视觉领域取得了显著的成功,它也面临一些局限性。CNN本质上依赖于局部感知,即通过卷积核在局部区域内捕获特征,这使得模型在处理长距离依赖关系(如图像的全局信息)时可能会受到限制。此外,随着网络深度增加,CNN 的参数和计算量也大幅提升,对硬件资源的需求变得越来越高。

2. ViT 模型的提出及重要性

为了突破 CNN 的局限性,研究者们开始探索其他架构在视觉任务中的应用。ViT(Vision Transformer) 模型的提出标志着视觉模型发展的一个重大转变。ViT 于 2020 年由 Google Research 团队提出,它将原本在自然语言处理中取得巨大成功的Transformer架构引入到视觉领域。Transformer 模型在语言处理任务中的优势在于其能够通过自注意力机制捕获序列中任意位置的依赖关系,从而更好地处理长距离依赖问题。

ViT 的提出改变了传统视觉任务的架构设计方式。与 CNN 不同,ViT 不再使用卷积操作来提取特征,而是将输入图像划分为一系列固定大小的块(Patch),然后通过 Transformer 编码器对这些块进行处理。这种设计使得 ViT 能够捕捉全局信息,从而有潜力提升视觉任务的表现。

ViT 的重要性 体现在几个方面:

  • Transformer 与视觉的成功结合:ViT 证明了 Transformer 架构不仅仅适用于语言处理任务,也能在视觉任务中表现出色,展示了 Transformer 的通用性。
  • 全局特征捕获能力:通过自注意力机制,ViT 能够更好地捕捉图像的全局信息,有效处理图像中长距离的依赖关系。
  • 模型性能提升:在大规模数据集上进行训练时,ViT 展示出与 CNN 相比具有竞争力的性能,并在某些任务上超越了传统的卷积神经网络。
3. 本文目标与结构

本文旨在详细解析 ViT 模型的核心原理,从模型的基本架构到其训练过程、性能分析、变体改进,以及应用场景。通过对 ViT 的深入剖析,读者将能够更好地理解这一突破性视觉模型的内在机制及其在计算机视觉领域中的应用前景。

本文将按照以下结构展开:

  1. ViT 模型概述:概述 Transformer 架构在视觉任务中的引入,并与传统卷积神经网络进行对比。
  2. ViT 模型核心原理:深入探讨 ViT 的架构设计,包括图像分块、位置编码和 Transformer 编码器等关键部分。
  3. ViT 模型的训练:分析 ViT 的训练方式,探讨预训练、微调以及数据增强等技术对模型性能的影响。
  4. ViT 模型的性能分析:与 CNN 模型进行对比,讨论 ViT 在不同数据集上的表现、优势及劣势。
  5. ViT 模型的变体与改进:介绍 ViT 的一些重要变体,如 DeiT、Swin Transformer 等,并分析它们的改进之处。
  6. ViT 模型的应用场景:展示 ViT 在实际应用中的表现,包括图像分类、目标检测、语义分割等。
  7. 未来展望:讨论 ViT 的潜在优化方向以及在其他领域的扩展应用。

通过本文的学习,读者将能够系统掌握 ViT 模型的基本概念、核心技术及其应用,并为未来的研究和开发提供参考。

二、ViT 模型概述

1. Transformer 的引入与视觉任务的结合

Transformer 模型最初是为自然语言处理(NLP)任务而提出的,尤其是在序列建模任务上(如机器翻译、文本生成等)表现出色。Transformer 的核心机制是自注意力机制(Self-Attention),它可以高效地捕获序列中任意位置之间的依赖关系。与循环神经网络(RNN)不同,Transformer 并不依赖于顺序处理,这让它在处理长距离依赖时更加高效。由于其并行化的特性,Transformer 成为 NLP 领域的主流模型。

ViT(Vision Transformer) 的关键创新在于将 Transformer 引入到计算机视觉任务中,特别是图像分类任务。传统的视觉任务通常通过卷积操作来提取图像特征,而 ViT 则借鉴了 NLP 领域中 Transformer 的思想,通过将图像转换为一系列固定大小的图像块(Patch),并将这些块视为输入序列,来处理视觉信息。这种做法打破了传统卷积神经网络的局限,使得模型能够更加灵活地捕捉图像中的全局特征。

2. 与传统卷积神经网络(CNN)的对比

ViT 的引入对比传统的卷积神经网络(CNN),在架构和特性上有几个显著的区别:

  • 局部 vs 全局感知

    • CNN:CNN 通过卷积核逐步提取图像的局部特征,经过多层卷积叠加后,最终在深层提取高维语义信息。这种方式擅长处理局部区域内的相关性,但由于卷积核的感受野有限,CNN 在捕捉全局依赖时可能需要更多层数或更复杂的架构。
    • ViT:ViT 通过自注意力机制在图像块之间建立全局关系,使得模型在处理长距离依赖关系时更加有效。自注意力机制可以直接在全局范围内计算特征之间的相互关系,具有更强的全局感知能力。
  • 特征提取方式

    • CNN:CNN 依赖于通过局部卷积核在整个图像上滑动,逐步提取特征。这种方法适合处理低层次的边缘、纹理等信息,但卷积核大小固定,难以同时兼顾不同尺度的特征。
    • ViT:ViT 将图像划分为多个固定大小的图像块(Patch),然后将每个图像块展平并嵌入到高维向量空间,再通过 Transformer 的注意力机制来捕捉图像块之间的关系。这种方式可以更加灵活地捕捉不同图像块的关联性和特征。
  • 计算复杂度

    • CNN:由于卷积核只处理局部信息,计算复杂度相对较低,尤其在较小的图像上,CNN 的计算效率非常高。
    • ViT:ViT 的自注意力机制在计算时会考虑整个图像块之间的关系,因此当图像块的数量增加时,计算复杂度显著提升。这也是 ViT 需要大规模数据集进行预训练的原因之一。
  • 依赖数据规模

    • CNN:CNN 在较小规模的数据集上依然表现良好,原因在于卷积操作能够通过共享卷积核减少参数量,从而避免过拟合。
    • ViT:ViT 由于参数量较大,依赖于大规模的数据集来进行预训练和微调。当数据量不足时,ViT 的性能可能不如 CNN,除非使用诸如数据增强等技术来提升模型的泛化能力。
3. ViT 的整体架构概览

ViT 的整体架构可分为以下几个主要部分:

  • 图像分块(Patch Embedding)
    首先,输入图像会被划分为一系列固定大小的图像块(如16x16),每个图像块都被展平为一维向量,并通过一个线性投影层将其映射到高维向量空间,形成图像块的嵌入表示。这类似于将图像转换为一个“序列”,这些序列成为 Transformer 的输入。

  • 位置编码(Position Embedding)
    在语言模型中,Transformer 利用位置编码来提供序列中的位置信息,图像块虽然没有明显的顺序,但仍需要位置信息来帮助模型理解每个图像块的相对位置。因此,ViT 为每个图像块添加了位置信息,确保模型在计算自注意力时能够考虑空间位置信息。

  • Transformer 编码器(Transformer Encoder)
    ViT 的核心是多个 Transformer 编码器层,每一层包括多头自注意力机制(Multi-head Self-Attention)和前馈神经网络。每个图像块的嵌入向量通过这些编码器层处理,计算图像块之间的全局依赖关系,并逐步提取全局特征。

  • 分类标记(CLS Token)
    ViT 的另一个重要设计是引入了一个特殊的分类标记(CLS Token),这个标记是用于最终的分类任务。CLS Token 会被与其他图像块的嵌入向量一同输入 Transformer,并在最后输出中表示整个图像的全局特征。最终,CLS Token 被送入一个全连接层进行分类任务。

  • 输出与分类
    ViT 在处理完成后,输出的 CLS Token 通过一个全连接层,生成最终的分类结果。

ViT 的架构通过将图像转化为图像块序列,并利用 Transformer 的全局注意力机制,能够更加灵活地捕捉图像的全局和局部特征。尽管计算复杂度较高,但 ViT 展示了其在大规模数据集上的潜力,尤其在预训练和微调之后,ViT 的性能可以与甚至超越传统的 CNN 模型。

三、ViT 模型核心原理

1. 图像分块(Patch Embedding)

图像分块是 ViT 模型中与传统卷积网络最大不同之处之一。ViT 不使用卷积核滑动窗口的方式来提取图像特征,而是将图像切分为多个固定大小的图像块(Patch),并将这些图像块嵌入到高维空间中作为 Transformer 模型的输入。这一处理方式将图像转换为类似于自然语言处理中的“序列”输入,从而能够应用 Transformer 的全局注意力机制。

图像块的切分方法

对于一个输入图像(如尺寸为 224 × 224 224 \times 224 224×224 的图像),ViT 首先将其划分为多个大小相同的子图像块。假设我们选择图像块大小为 16 × 16 16 \times 16 16×16,那么原始图像将被分成 14 × 14 = 196 14 \times 14 = 196 14×14=196 个图像块,每个图像块包含 16 × 16 × 3 = 768 16 \times 16 \times 3 = 768 16×16×3=768 个像素值(假设图像是 RGB 图像)。这些图像块是独立的,彼此之间没有重叠。

嵌入层的构建

切分后的图像块首先被展平为一维向量,然后通过一个线性投影层(Fully Connected Layer)将每个展平的图像块映射到一个固定的高维向量空间中。例如,每个展平后的图像块可以被映射为一个 768 维向量(或其他固定大小的向量)。这一过程类似于词嵌入(word embedding),即将输入的离散图像块转化为连续的向量表示。

公式上表示为:
如果图像被分为 N N N 个图像块,且每个块展平后的维度为 P × P × C P \times P \times C P×P×C(其中 P P P 为图像块大小, C C C 为通道数),则嵌入过程为:
  z 0 i = x i E , i = 1 , … , N \ z_0^i = x^i E, \quad i = 1, \dots, N  z0i=xiE,i=1,,N
其中 x i x^i xi 表示第 i i i 个图像块的展平向量, E E E 是一个学习到的线性映射矩阵, z 0 i z_0^i z0i 是图像块的嵌入向量。

2. 位置编码(Position Embedding)

在 Transformer 模型中,序列数据(如文本)中的位置信息对任务的成功至关重要,然而,标准的 Transformer 模型对输入序列的位置没有任何固有的理解。为了解决这一问题,Transformer 引入了位置编码(Position Embedding),以确保模型能够识别每个输入位置的相对关系。

Transformer 中的位置编码在图像处理中的作用

对于图像任务,位置信息同样非常关键,因为图像中像素的空间关系是决定图像结构的核心。在传统的卷积神经网络中,卷积核通过局部感知和权重共享固有地捕捉到图像的空间结构信息,而 ViT 中通过将图像切分为离散的图像块,导致每个图像块独立地输入 Transformer,因此需要显式地加入位置信息来帮助模型理解每个图像块在原始图像中的位置。

ViT 中的位置编码方式

ViT 借鉴了 Transformer 在 NLP 中的位置编码方法,为每个图像块添加一个固定或可学习的位置嵌入(Position Embedding)。这相当于在每个图像块的嵌入向量中,附加一个与其在图像中的位置信息对应的向量。通过这种方式,ViT 能够在处理图像块之间的关系时保留空间信息。

ViT 中的位置信息可以通过固定位置编码可学习位置编码实现:

  • 固定位置编码:通过预先定义的正弦和余弦函数生成的位置编码,与原始 Transformer 相同。
  • 可学习位置编码:模型通过训练自动学习每个位置的编码值,使得模型能够更加灵活地适应图像块间的关系。

最终,位置编码与图像块的嵌入向量相加,形成每个图像块的最终输入表示:
z 0 = [ z 0 1 ; z 0 2 ; …   ; z 0 N ] + E pos z_0 = [z_0^1; z_0^2; \dots; z_0^N] + E_{\text{pos}} z0=[z01;z02;;z0N]+Epos

3. Transformer 编码器(Transformer Encoder)

Transformer 编码器是 ViT 模型的核心,用于对图像块进行处理并捕捉全局依赖关系。每个 Transformer 编码器层包括两个关键部分:多头自注意力机制(Multi-head Self-Attention)前馈神经网络(Feed-Forward Network,FFN)

自注意力机制的实现

自注意力机制(Self-Attention)是 Transformer 中的核心,它通过计算输入序列中每个元素与其他元素的关系来捕捉长距离依赖。在 ViT 中,自注意力机制用于计算每个图像块与其他图像块之间的关系。具体步骤如下:

  1. 查询、键和值(Query, Key, Value)计算
    对于每个输入图像块嵌入 z 0 i z_0^i z0i,分别通过三个线性变换生成查询(Q)、**键(K)值(V)**向量。
    Q = z 0 W Q , K = z 0 W K , V = z 0 W V Q = z_0 W_Q, \quad K = z_0 W_K, \quad V = z_0 W_V Q=z0WQ,K=z0WK,V=z0WV
    其中 W Q W_Q WQ W K W_K WK W V W_V WV 是可学习的权重矩阵。

  2. 自注意力得分计算
    通过点积计算每个图像块的查询与其他图像块的键的相似度,得到注意力得分矩阵,并对其进行缩放和平滑处理。
    Attention ( Q , K , V ) = softmax ( Q K T d k ) V \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V Attention(Q,K,V)=softmax(dk QKT)V
    其中 d k d_k dk 是查询和键向量的维度,用于缩放点积结果。

  3. 注意力加权求和
    最后,注意力得分与值向量相乘,得到每个图像块的加权表示,表示了该图像块与其他图像块的相关性。

多头自注意力的细节与作用

多头自注意力机制(Multi-head Self-Attention)是 Transformer 编码器中进一步增强的部分。通过并行计算多个自注意力机制(即多个头),模型能够从不同的子空间中捕捉图像块之间的多样化关系。

具体来说,多头自注意力机制通过多个头的并行计算,可以关注不同层次或不同维度的特征。这种机制提升了模型的表达能力,使其能够同时捕捉图像的局部和全局依赖。

残差连接和归一化层的设计

为了使得深层网络的梯度传递更加顺畅,ViT 在每个 Transformer 编码器层之间引入了残差连接(Residual Connection)层归一化(Layer Normalization)。残差连接通过直接将输入跳跃到输出,缓解了梯度消失问题,使得模型能够更稳定地训练。

层归一化则有助于保持网络训练的稳定性,防止梯度爆炸,并确保网络的每一层输出具有合理的范围。

ViT 的核心机制在于通过将图像块作为输入序列并利用 Transformer 编码器中的自注意力机制,捕捉图像块之间的长距离依赖关系,从而提升模型在全局特征提取方面的能力。通过图像分块、位置编码、多头自注意力和残差连接,ViT 能够有效地处理复杂的视觉任务并展示出卓越的性能。

四、ViT 模型的训练

1. 预训练与微调的范式

与其他深度学习模型相似,ViT(Vision Transformer) 的训练采用了预训练微调的范式。这种方法在大规模数据集上进行初步训练,然后将预训练的模型迁移到较小的数据集上进行微调,是提高模型泛化能力的有效策略。

  • 预训练
    ViT 模型的参数量非常大,在直接训练较小的数据集时容易发生过拟合。因此,通常使用大规模数据集(如 ImageNet-21k 或 JFT-300M 等)进行预训练。这些数据集包含数千万甚至上亿张图像,能够为 ViT 提供足够多的视觉模式和特征来学习。

    在预训练阶段,模型的目标是通过自监督或监督学习任务进行优化。例如,常见的任务是图像分类,即模型根据图像输入预测相应的标签。通过长时间在大规模数据集上训练,ViT 可以获得强大的视觉特征提取能力。

  • 微调
    预训练完成后,ViT 模型可以迁移到目标任务上进行微调。在微调阶段,使用较小规模的数据集对模型进行轻度调整,使其适应特定任务。这种策略不仅加速了训练过程,还能避免从头开始训练模型时遇到的数据不足问题。

    微调的方式包括冻结部分预训练参数,或对整个网络进行重新训练。通过调整模型在目标数据集上的表现,ViT 能够在诸如医疗图像分析、工业监控等任务中取得良好的效果。

2. 数据增强与正则化

由于 ViT 模型中没有使用卷积层,因此它在处理视觉特征时不像 CNN 那样天然具有对局部空间特征的敏感性。因此,ViT 的训练依赖于大规模数据和有效的数据增强与正则化技术,以提高模型的泛化能力,避免过拟合。

  • 数据增强(Data Augmentation)
    数据增强是一种在训练过程中生成额外训练样本的技术,通过对原始图像进行随机变换来提高模型的鲁棒性。对于 ViT,常用的数据增强方法包括:

    • 随机裁剪:在训练时随机裁剪图像区域,改变图像输入的空间分布,使模型更具鲁棒性。
    • 水平翻转:随机水平翻转图像,有助于模型学习对称性。
    • 色彩抖动:随机改变图像的亮度、对比度、饱和度等,增强模型对不同光照条件的适应性。
    • 混合样本(Mixup)与CutMix:通过将多张图像混合或部分裁剪,生成新的训练样本,提升模型的泛化能力。
  • 正则化(Regularization)
    ViT 的参数量较大,模型容易在小数据集上过拟合。为了解决这一问题,常用的正则化方法包括:

    • 权重衰减(Weight Decay):通过对模型权重施加惩罚项,避免权重过大导致的过拟合。
    • 随机丢弃(Dropout):在训练过程中随机丢弃一部分神经元,防止网络对某些特征过度依赖,从而提高模型的泛化性能。
    • 标签平滑(Label Smoothing):将训练中的目标标签略微平滑,避免模型过度自信于单一类别预测。

通过结合数据增强和正则化,ViT 能够更好地在不同的图像分布和视觉模式下进行训练,并提升其在小数据集上的泛化能力。

3. ViT 在大规模数据集上的表现

ViT 的一个显著特征是它在大规模数据集上的卓越表现。由于 ViT 的自注意力机制能够捕捉全局特征,因此它需要大量数据才能充分发挥其优势。相比传统的卷积神经网络,ViT 对数据量更加敏感,在小数据集上往往难以取得较好的性能,而在大规模数据集上表现则十分突出。

  • ImageNet 数据集
    在 ImageNet-1k(包含120万张图像的分类数据集)上,ViT 已展示出与 ResNet 等 CNN 模型相当的性能。然而,当训练数据扩展到 ImageNet-21k(包含1400万张图像)时,ViT 的表现显著提升,超过了大多数 CNN 模型。ViT 的表现证明了其在大数据集上具有强大的学习能力和泛化性。

  • JFT-300M 数据集
    Google 使用 JFT-300M 数据集(一个包含3亿张图像的大规模数据集)对 ViT 进行预训练,结果显示 ViT 在多个视觉任务中取得了最先进的表现。预训练后的 ViT 模型在多个下游任务(如图像分类、目标检测等)中表现优异,证明了在足够多的数据支持下,ViT 可以显著超越传统 CNN 模型。

  • 小数据集上的挑战
    尽管 ViT 在大规模数据集上表现出色,但它在小数据集上的表现不如 CNN 这种天然适合处理小数据的模型。这主要是因为 ViT 的参数量较大,且没有卷积网络那种局部感知的优势。在小数据集上,ViT 容易发生过拟合,无法充分学习到有效特征。因此,针对小数据集,通常需要引入更多的数据增强和正则化手段,或者采用改进版本的 ViT(如 DeiT)来提升模型的性能。

ViT 在大规模数据集上的表现非常优异,尤其是在大数据量支撑下的视觉任务中具有强大的优势。通过预训练、数据增强和正则化等技术,ViT 能够处理复杂的视觉任务,并在多个视觉领域展示出卓越的泛化能力。

五、ViT 模型的性能分析

1. 与 CNN 模型的对比

ViT(Vision Transformer)和传统的卷积神经网络(CNN)在图像处理任务中的表现存在显著差异,两者在特征提取方式、架构设计和训练需求上有着根本性的不同。

  • 特征提取方式

    • CNN:通过卷积核在局部区域逐步提取特征,随着层数加深,提取的特征从低级到高级,最终汇总到全局特征。卷积操作具有共享权重的特性,适合处理局部依赖关系。
    • ViT:使用自注意力机制对全局图像块进行特征提取,这种方法能够同时捕捉全局和局部信息,并且不会像 CNN 那样依赖局部感受野。因此,ViT 在长距离依赖关系的建模上具有天然优势。
  • 模型架构与训练需求

    • CNN:由于卷积操作和局部权重共享,CNN 对小规模数据集的泛化能力较好,能够在较小的数据集上有效训练。同时,CNN 的局部感受野使得它在提取细节特征上非常高效。
    • ViT:ViT 模型结构依赖于全局自注意力机制,这导致其需要大量数据进行预训练才能有效地学习全局特征。因此,ViT 在小数据集上的表现往往不如 CNN,而在大规模数据集上则可以展示出更优异的性能。
2. ViT 的优势与劣势
优势
  • 全局依赖关系的捕捉能力
    ViT 通过自注意力机制,能够在图像块之间捕捉长距离的依赖关系,这使得 ViT 在处理大规模复杂视觉任务时具有极大的潜力。CNN 需要通过增加层数来扩展感受野,而 ViT 的全局感受机制天然能够捕捉到图像中的全局信息。

  • 灵活的模型架构
    ViT 的架构相对更加灵活,能够通过简单的图像块划分方式,将任意分辨率的图像转换为固定大小的输入序列。这一特点使得 ViT 可以在各种视觉任务上快速适配不同的输入,具备通用性。

  • 预训练迁移效果显著
    ViT 在大规模数据集上的预训练能够有效迁移到不同的下游任务。通过在大规模数据集上进行预训练,ViT 能够获得强大的特征表示能力,在后续任务上通过微调进一步提升性能。

劣势
  • 数据需求量大
    ViT 的训练强烈依赖于大规模数据集。由于缺乏像 CNN 那样的局部感受野特性,ViT 在小数据集上的性能不理想。在大数据量的支持下,ViT 才能展现出其真正的潜力。

  • 训练时间长,计算复杂度高
    ViT 依赖于自注意力机制,而自注意力的计算复杂度是平方级别的,这意味着随着图像块数量的增加,模型的计算开销会显著增加。与 CNN 的卷积操作相比,ViT 的计算代价更高,因此在硬件资源上有较高的要求。

  • 缺少空间不变性
    CNN 模型通过卷积操作天然具备空间不变性(即图像的位移、缩放等变化不会显著影响卷积操作的效果),而 ViT 依赖位置编码来捕捉图像的空间信息,这种方式在处理一些视觉任务时可能不如 CNN 稳定。

3. ViT 的计算复杂度分析

ViT 的计算复杂度主要源自自注意力机制。对于输入的 N N N 个图像块,每个图像块的特征维度为 d d d,自注意力机制需要计算每两个图像块之间的关系。具体来说,自注意力计算复杂度为 O ( N 2 × d ) O(N^2 \times d) O(N2×d),因为需要对每个图像块与其他所有图像块计算注意力得分。

  • 与 CNN 的对比
    • CNN 的卷积操作局部化,每次只处理相邻的像素块,计算复杂度为 O ( N × k 2 × d ) O(N \times k^2 \times d) O(N×k2×d),其中 k k k 是卷积核的大小。对于大多数视觉任务,卷积操作的局部感受机制使其计算效率高,尤其在处理高分辨率图像时表现出色。
    • ViT 在处理全局依赖时,尽管能够捕捉长距离依赖,但随着图像块数量的增加,自注意力的计算复杂度增长迅速,导致在处理高分辨率图像时,ViT 的计算开销明显大于 CNN。

因此,在实际应用中,ViT 的训练时间和计算资源需求往往高于 CNN,尤其在输入图像较大时,自注意力机制的计算开销会变得非常明显。

4. 如何应对数据不足问题

由于 ViT 在小规模数据集上难以发挥其优势,研究人员提出了一些方法来缓解数据不足的问题,并提高 ViT 在小数据集上的性能。

  • 数据增强(Data Augmentation)
    数据增强技术能够扩展数据集规模,增加数据的多样性。在 ViT 的训练过程中,常用的数据增强方法包括随机裁剪、翻转、旋转、色彩抖动等。这些方法能够有效增加样本量,帮助 ViT 适应更多的视觉模式。

  • 小样本预训练变体:DeiT(Data-efficient Image Transformer)
    DeiT 是 ViT 的一个改进版本,它专门为数据不足的情况设计,能够在较小的数据集上实现有效的训练。DeiT 通过引入教师-学生蒸馏策略,将预训练的 CNN 模型作为教师模型,引导 ViT 的学习过程。这种方式不仅减少了 ViT 对大数据集的依赖,还显著提升了其在小数据集上的表现。

  • 正则化与正则化技术
    增加权重衰减、Dropout、标签平滑等正则化手段能够有效防止过拟合,帮助 ViT 更好地泛化。在数据不足的情况下,正则化技术对于稳定模型训练至关重要。

  • 模型精简与优化
    针对自注意力计算复杂度高的问题,研究人员还提出了对 ViT 的架构进行优化的方法,如通过减少图像块的数量,或者引入局部注意力机制(如 Swin Transformer)来降低计算开销,同时提升模型性能。

ViT 模型在大规模数据集上表现出色,尤其在捕捉全局特征方面具备强大的能力。与 CNN 相比,ViT 更加灵活且适应性强,但它依赖大量数据进行预训练,并在计算复杂度上存在较高的开销。针对小数据集的局限性,数据增强、正则化、模型优化等策略能够显著提升 ViT 的泛化性能。未来,随着大规模数据集的普及和硬件的进步,ViT 在视觉任务中的应用前景十分广阔。

六、ViT 模型的变体与改进

自 ViT 模型(Vision Transformer)提出以来,研究者们针对其在某些场景中的局限性,提出了多个改进版本。这些变体主要集中在提升 ViT 的数据效率、计算复杂度和模型在不同任务上的性能表现。以下是一些重要的 ViT 变体及其改进点。

1. DeiT(Data-efficient Image Transformers)

DeiT(Data-efficient Image Transformer)是专为解决 ViT 在小数据集上表现不佳的问题而提出的改进模型。DeiT 的目标是减少 ViT 对大规模数据集的依赖,使其能够在较小的数据集上实现有效训练。

核心改进
  • 知识蒸馏(Knowledge Distillation)
    DeiT 的关键技术是使用知识蒸馏方法,通过将一个预训练的 CNN 模型作为教师模型,指导 ViT 的学习过程。具体做法是引入一个额外的蒸馏标记(Distillation Token),它与原始分类标记(Classification Token)一同参与 Transformer 计算。教师模型输出的软标签帮助 ViT 更快学习到有效的特征,尤其是在数据有限的情况下。

  • 提高训练效率
    DeiT 的蒸馏策略不仅加速了 ViT 的训练过程,还增强了模型的泛化能力,使得 DeiT 能够在数据规模相对较小的 ImageNet-1k 数据集上训练,并取得接近 CNN 模型的表现。

优势
  • 在数据效率方面,DeiT 不再依赖超大规模的数据集,能够在相对较小的数据集上训练成功,并达到与 CNN 相近的性能水平。
  • DeiT 的架构简洁、灵活,可以轻松集成到现有的 Transformer 架构中。
2. Swin Transformer

Swin Transformer(Shifted Window Transformer)是专门为提高 ViT 的计算效率和适应性而设计的一种局部注意力机制变体。它将全局自注意力机制缩小到局部区域,显著减少了计算复杂度,并且提升了 ViT 在图像分辨率变化和多任务处理上的表现。

核心改进
  • 局部自注意力(Local Attention)
    Swin Transformer 引入了局部自注意力机制,将图像划分为固定大小的非重叠窗口,在每个窗口内计算自注意力,而不是在整个图像块之间计算。这种局部化处理方式减少了自注意力的计算开销,适合处理高分辨率图像。

  • 滑动窗口(Shifted Window)
    为了弥补局部窗口之间的上下文丢失,Swin Transformer 采用了滑动窗口技术,允许窗口之间共享信息。通过在不同的 Transformer 层交替使用不同的窗口排列方式,模型能够捕捉到跨窗口的全局信息,保持全局感受能力。

  • 分层结构(Hierarchical Structure)
    Swin Transformer 通过逐步缩减窗口大小的方式构建分层特征表示,这类似于 CNN 中的金字塔结构(如 ResNet)。这种方式不仅提升了模型的多尺度感知能力,还使得 Swin Transformer 在处理目标检测、语义分割等任务时表现优异。

优势
  • 计算效率更高:Swin Transformer 大大降低了 ViT 中全局自注意力的计算复杂度,尤其在高分辨率图像和密集计算任务上效率提升显著。
  • 通用性强:通过引入分层结构和滑动窗口机制,Swin Transformer 能够适应图像分类、目标检测、语义分割等多个视觉任务。
3. PiT(Pyramid Vision Transformer)

PiT(Pyramid Vision Transformer)旨在通过引入类似 CNN 的金字塔结构来增强 ViT 的特征提取能力。PiT 保留了 ViT 模型的自注意力机制,但增加了多尺度特征提取的能力,从而在分类任务上表现更好。

核心改进
  • 金字塔结构(Pyramid Structure)
    PiT 的主要贡献在于引入了金字塔结构,使得特征图逐层缩减。这与 CNN 中常用的池化操作类似,通过逐层减少特征图的大小,模型能够提取不同层次的特征。这样,PiT 可以更好地捕捉图像的局部和全局特征。

  • 减少计算复杂度
    PiT 在高层次通过减少特征图的分辨率来降低自注意力的计算成本。这种结构不仅提升了计算效率,还增强了模型的多尺度感知能力。

优势
  • 多尺度特征感知:金字塔结构使得 PiT 能够在不同尺度上提取图像的局部和全局特征,提升了模型对复杂视觉任务的表现。
  • 计算效率:通过逐步降低分辨率,PiT 减少了高层次特征的计算复杂度,适合处理大型图像分类任务。
4. CvT(Convolutional Vision Transformer)

CvT(Convolutional Vision Transformer)结合了卷积操作和 Transformer 的优势,旨在弥补 ViT 在提取局部特征时的不足。CvT 将卷积操作融入到 Transformer 中,从而提升了模型对局部细节的捕捉能力,同时保留了 Transformer 的全局感知能力。

核心改进
  • 卷积嵌入(Convolutional Embedding)
    CvT 在图像块嵌入阶段引入卷积操作,取代了 ViT 中的简单线性投影。通过卷积层,CvT 能够在嵌入图像块的同时提取局部特征,提高了模型对细节的捕捉能力。

  • 卷积注意力(Convolutional Attention)
    在自注意力计算过程中,CvT 通过卷积操作调整键(Key)和查询(Query)的计算方式,增强了模型对局部空间信息的关注。卷积注意力能够更加有效地捕捉局部特征,同时减少对全局计算的依赖。

优势
  • 局部感知与全局依赖的平衡:CvT 结合了卷积操作和自注意力机制,在局部和全局特征提取上表现均衡,特别适合处理包含细节丰富的图像任务。
  • 更快的收敛速度:由于卷积操作对局部特征的有效捕捉,CvT 能够在较少的训练迭代下达到良好的性能表现。

ViT 模型的成功引发了众多变体的出现,诸如 DeiTSwin TransformerPiTCvT 等模型分别在数据效率、计算复杂度、多尺度感知、局部特征提取等方面进行了改进。这些变体不仅增强了 ViT 的通用性和适应性,还在各种视觉任务中表现优异。

随着这些变体的不断优化,ViT 在视觉领域的应用潜力将更加广泛,并且逐渐解决了原始 ViT 模型在计算资源需求和小数据集训练上的问题。

七、ViT 模型的应用场景

自 ViT(Vision Transformer)提出以来,它的强大性能和灵活性使得该模型在多个计算机视觉任务中得到了广泛应用。ViT 模型凭借其捕捉图像全局依赖的能力,在图像分类、目标检测、语义分割等任务中展现了极大的潜力。以下是 ViT 在各个主要视觉任务中的应用场景。

1. 图像分类

图像分类 是 ViT 最初的核心任务,也是该模型展现其优势的领域之一。传统的卷积神经网络(CNN)通过局部特征提取,逐层叠加实现最终的分类,而 ViT 则通过自注意力机制直接捕捉图像中的全局信息,从而在复杂的分类任务中展现出极高的准确率。

  • ViT 在大规模数据集上的表现
    在大规模图像分类数据集(如 ImageNet-21k 和 JFT-300M)上,ViT 凭借全局自注意力机制超越了传统的 CNN 模型,尤其在处理包含大量细节和复杂模式的图像时,ViT 表现出色。

  • 在小数据集上的适应性
    尽管 ViT 依赖大数据集进行预训练,但通过诸如 DeiT 这样的改进模型,ViT 也在较小规模的分类任务上取得了显著进展。借助知识蒸馏等技术,ViT 可以在少量数据上有效训练并生成高精度的分类结果。

实际应用:
  • 自动驾驶车辆中的物体识别。
  • 医学图像中的疾病分类,如癌症检测。
  • 大规模电商平台中的商品分类。
2. 目标检测

目标检测 是计算机视觉领域的另一重要任务,旨在识别图像中的目标对象并精确定位其边界。ViT 模型通过自注意力机制在图像中捕捉全局和局部信息,为目标检测提供了新的思路。

  • ViT 的自注意力机制在目标检测中的优势
    传统目标检测框架(如 Faster R-CNN、YOLO 等)通过卷积操作逐步提取特征图,再进行候选区域的预测。ViT 则不同,它能够直接通过自注意力机制分析图像中的全局关系,使得它在处理复杂场景、拥挤物体和细节丰富的目标时更加精准。

  • Swin Transformer 的应用
    Swin Transformer 通过分层结构和局部注意力机制的引入,极大降低了计算复杂度,尤其适合高分辨率图像的目标检测任务。其多尺度特征提取的能力使得模型能够同时处理大目标和小目标,提升了检测的精度和速度。

实际应用:
  • 安防监控系统中的人脸检测和行为分析。
  • 自动驾驶汽车中的行人、车辆检测与跟踪。
  • 工业检测中的瑕疵检测,如产品缺陷检测。
3. 语义分割

语义分割 是计算机视觉中更加复杂的任务,它不仅要求识别图像中的每一个目标,还需要为每一个像素赋予特定的类别标签。ViT 通过其全局上下文捕捉能力,特别适合处理这种需要对每个像素点进行分类的任务。

  • ViT 在语义分割中的全局捕捉能力
    传统的卷积神经网络在语义分割任务中表现良好,尤其是通过诸如 UNet 等模型的多尺度特征融合。然而,ViT 的优势在于其能够捕捉整个图像的全局上下文,这对于精细化的分割任务非常有帮助。例如,ViT 能够有效区分视觉上相似但语义不同的物体,提升分割精度。

  • Swin Transformer 的分层特征表示
    Swin Transformer 在语义分割任务中表现尤为突出,其通过引入金字塔结构,能够在不同分辨率上捕捉图像特征,并有效融合局部和全局信息,从而提升了分割的准确性。

实际应用:
  • 医学图像分析中的器官或病灶分割,如 MRI 图像中的脑组织分割。
  • 自动驾驶中的道路场景理解和分割,如车道、道路标志等。
  • 卫星图像分析中的土地覆盖分类。
4. 图像生成与重建

图像生成与重建 任务涉及从低质量的图像中生成高清图像,或从部分缺失的图像中恢复完整图像。ViT 的自注意力机制在生成式任务中表现出色,因为它能够全局建模,并生成更加逼真的图像内容。

  • 自注意力机制在图像生成中的应用
    在图像生成任务中,模型需要从噪声或部分输入生成完整图像,而传统的卷积网络通常会因为局部感知性而产生模糊的边缘或细节丢失。ViT 的自注意力机制能够在生成过程中保持全局一致性,从而生成更加自然的图像。

  • 重建任务中的应用
    对于图像超分辨率、去噪等任务,ViT 能够通过多层的全局注意力机制捕捉图像的整体结构和细节信息,重建出清晰、精细的高分辨率图像。

实际应用:
  • 摄像头捕捉的低分辨率图像的超分辨率生成。
  • 视频帧的插帧与修复,在视频流中生成丢失或受损的帧。
  • 文物修复中的数字图像修复,填补缺失部分。

ViT 模型因其独特的自注意力机制,能够灵活应用于多个计算机视觉任务中。无论是传统的图像分类,还是更复杂的目标检测、语义分割、图像生成与重建任务,ViT 都展示了强大的潜力。随着 ViT 变体(如 Swin Transformer)的不断优化,ViT 在视觉领域的应用场景将会进一步扩展,并为计算机视觉带来更多创新性解决方案。

八、未来展望

随着 ViT(Vision Transformer)模型在计算机视觉任务中的广泛应用和成功,未来的发展方向充满了潜在的优化机会。ViT 的全局特征提取和自注意力机制赋予了它与 CNN 不同的强大能力,然而,ViT 仍有许多待改进的方面。此外,ViT 的应用领域也可以从图像任务扩展到更复杂的数据类型和工业场景中。

1. ViT 的潜在优化方向

虽然 ViT 在捕捉图像的全局信息方面表现出色,但它在计算复杂度、数据需求等方面仍存在一定局限。未来的研究可以围绕以下几个方向优化 ViT 模型。

  • 降低计算复杂度
    ViT 的自注意力机制在处理大规模图像块时计算复杂度较高,尤其在高分辨率图像任务中,计算代价显著。未来可以通过引入更高效的注意力机制(如稀疏注意力、局部注意力等)来减少计算复杂度。例如,Swin Transformer 就通过局部注意力机制显著减少了计算开销,类似的方法可以进一步优化。

  • 更好的数据效率
    ViT 对大规模数据集有较强依赖,这在小数据集或数据稀缺场景中限制了其性能。未来,研究可以重点探索如何让 ViT 在小数据集上有效学习。例如,可以引入更多数据增强策略、知识蒸馏技术,或者开发更高效的自监督学习方法,以减少对标注数据的需求。

  • 模型结构的简化
    ViT 的多层 Transformer 编码器尽管表现优异,但结构复杂且难以在移动设备等资源受限环境下部署。未来可以通过模型压缩、蒸馏等技术,探索如何简化 ViT 的模型结构,使其在轻量级设备上部署并运行。此外,动态推理策略(即根据输入的复杂度动态调整模型计算量)也可能是一种优化方法。

  • 增强局部特征捕捉
    ViT 的全局感受特性是其优势,但有时对局部细节的处理较弱。未来可以考虑如何有效融合局部特征和全局信息,使得 ViT 在同时处理局部细节和全局上下文时表现更为平衡。这方面的研究可以借鉴 CNN 的局部特征提取能力,进一步探索混合模型(如 CvT 的卷积嵌入方式)。

2. ViT 在其他领域的可能扩展

尽管 ViT 目前主要应用于图像分类、目标检测、语义分割等二维图像任务中,但其自注意力机制的强大特性为其扩展到其他数据类型和领域提供了很大潜力。以下是 ViT 在其他领域的潜在扩展方向。

  • 视频处理与分析
    在视频分析任务中,ViT 的全局依赖建模能力可以用于处理视频中的时空关系。ViT 可以被扩展为处理时空注意力机制,从而同时捕捉视频帧之间的动态变化和每帧中的空间特征。这将有助于视频分类、动作识别、视频生成和视频帧插值等任务的性能提升。

    • 时空 Transformer:目前已经有一些研究(如 Video Swin Transformer)展示了 Transformer 在视频分析任务中的潜力,未来的工作可以进一步优化 ViT 结构,专门处理视频中的长时空依赖。
  • 3D 视觉任务
    在 3D 视觉任务中,如 3D 物体检测、3D 重建和场景理解,ViT 的全局特征捕捉能力可以帮助建模 3D 点云数据或体素数据。Transformer 的自注意力机制能够处理 3D 点之间的复杂关系,并可以用于多视图融合任务。未来的研究可以结合3D Transformer,专门设计适用于 3D 数据处理的 ViT 变体。

  • 多模态学习
    ViT 还可以与其他模态数据(如文本、音频、视频等)结合,发展成多模态 Transformer 模型。通过融合不同模态的信息,ViT 可以处理更复杂的跨模态任务,如文本生成图像、图像生成文本等。多模态 Transformer 的扩展可以应用于自动驾驶、智能问答系统、虚拟现实等领域。

  • 医学影像分析
    在医学影像分析领域,ViT 已展现出强大的潜力,尤其在医学图像分类、病灶分割、3D MRI 分析等任务中。未来,ViT 可以通过结合更多的领域特定知识和更高效的特征提取方法,进一步优化其在医学数据中的表现,推动智能诊断和辅助治疗技术的发展。

3. ViT 在工业应用中的前景

ViT 模型在工业中的应用前景十分广阔,尤其是在自动化、智能化和大数据处理日益增长的需求下,ViT 的全局感知能力和适应性可以为多个行业带来变革。

  • 自动驾驶与智能交通
    自动驾驶领域依赖于实时的视觉感知和环境理解,ViT 的全局依赖建模能力非常适合处理复杂交通场景中的物体识别、道路检测和行人行为分析。未来,ViT 结合视频分析能力,可以帮助自动驾驶系统更快、更准确地做出决策,从而提高驾驶安全性。

  • 制造业中的质量控制与检测
    在工业生产中,产品质量检测是关键环节。ViT 的图像分类和检测能力可以用于检测生产线上产品的瑕疵和缺陷。其全局特性可以帮助识别复杂的模式和细微缺陷,尤其适合高精度制造业的质量控制。

  • 安防监控与行为识别
    ViT 在视频分析中的应用使得它在安防监控、智能摄像头等领域具有重要价值。它可以用于行为识别、异常检测、目标跟踪等任务,提供更智能的安防系统。未来,随着 ViT 在视频分析领域的进一步发展,智能监控系统可以实现更高效的实时分析和自动化监控。

  • 内容生成与数字娱乐
    在数字娱乐和内容生成领域,ViT 可以用于图像生成、视频生成、图像重建等任务。随着 ViT 在图像生成任务中的能力提升,它可以帮助电影制作、游戏开发等领域自动生成高质量的视觉内容,推动数字内容产业的发展。

ViT 模型的发展前景非常广阔,它在捕捉全局信息、处理复杂模式方面展现了强大的能力。未来,ViT 的优化方向将集中在降低计算复杂度、提高数据效率和增强局部特征捕捉能力上。与此同时,ViT 的应用场景也将从二维图像扩展到视频、3D 视觉和多模态领域。此外,随着 ViT 在工业中的应用逐步落地,它将为自动驾驶、制造业、安防监控和数字娱乐等领域带来深远影响。

九、结论

1. 对 ViT 模型的总结与展望

ViT(Vision Transformer)模型的提出为计算机视觉领域带来了新的思路,突破了卷积神经网络(CNN)在局部特征提取上的限制,通过自注意力机制有效地捕捉图像的全局依赖关系。ViT 通过将 Transformer 架构成功应用于视觉任务,展现了极大的潜力,在图像分类、目标检测、语义分割等任务中表现出色,尤其在大规模数据集上,ViT 的性能超过了传统的 CNN 模型。

ViT 的成功也促使了诸多变体的出现,如 DeiT、Swin Transformer、PiT、CvT 等,它们在数据效率、计算复杂度、多尺度特征提取等方面进行了改进,使得 ViT 能够在更多场景中应用。同时,ViT 的全局特征提取能力使其在图像生成、重建、视频处理、3D 视觉、多模态学习等领域的应用前景非常广阔。

未来,ViT 的研究和发展方向将围绕以下几个方面展开:

  • 降低计算复杂度:探索更高效的注意力机制,如局部注意力或稀疏注意力,减少计算资源的消耗,使得 ViT 能够处理更高分辨率的图像和更复杂的任务。
  • 增强数据效率:发展更加高效的训练策略,包括小样本学习、自监督学习和数据增强方法,提升 ViT 在小数据集上的表现。
  • 模型优化和轻量化:进一步简化 ViT 模型结构,开发适合移动设备和边缘计算的轻量级模型,拓展 ViT 的应用范围。
2. 对开发者的建议与未来研究方向

随着 ViT 模型的不断发展和应用的广泛拓展,开发者在使用 ViT 时应注意以下几点:

  • 大规模数据集的有效利用:ViT 模型在大数据集上的表现尤为出色,因此开发者应优先考虑通过大规模数据集进行预训练。在没有大数据集的情况下,使用如 DeiT 的知识蒸馏策略或通过自监督学习增强模型的泛化能力也是可行的解决方案。

  • 结合特定任务的需求选择 ViT 变体:根据任务的计算资源、应用场景和数据规模,选择合适的 ViT 变体。例如,Swin Transformer 适合处理高分辨率图像和多尺度任务,PiT 适合图像分类,CvT 则在局部特征捕捉上更为强大。

  • 持续关注最新的研究进展:ViT 是一个快速发展的研究领域,开发者应密切跟踪相关论文和开源项目中的最新动态,如新提出的模型优化技术、多模态应用扩展等。

  • 多模态融合和新兴领域的探索:随着 ViT 在图像领域的成功,未来的研究可以进一步探索其在多模态学习(如图像-文本生成、视频处理等)中的应用。开发者可以结合 Transformer 的通用性,尝试跨模态任务中的创新应用。

  • 优化硬件性能和资源配置:ViT 的计算复杂度较高,开发者在部署 ViT 模型时应考虑优化硬件资源,利用分布式训练、模型压缩、精度量化等技术,以提高模型的执行效率。

ViT 模型为计算机视觉领域带来了新的机遇和挑战。通过有效利用 ViT 的全局特征捕捉能力,并结合最新的研究成果,开发者能够在实际项目中充分发挥 ViT 模型的优势。随着 ViT 技术的不断优化和变革,未来的研究将进一步推动其在图像、视频、3D 视觉等多领域的广泛应用。

十、参考文献与资源

在深入了解 ViT 模型的过程中,相关的研究论文、开源代码库以及学习资源至关重要。以下是 ViT 相关的参考文献、代码库和推荐的书籍与教程。

1. ViT 相关论文及参考文献
  • Vision Transformer (ViT):

    • Title: “An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”
      • Authors: Alexey Dosovitskiy, et al.
      • Published: 2020
      • Abstract: 该论文首次提出了 ViT 模型,展示了将 Transformer 架构成功应用于图像分类任务。通过使用自注意力机制,ViT 能够有效捕捉图像的全局信息,特别是在大规模数据集上表现出色。
      • Link: arXiv:2010.11929
  • Data-efficient Image Transformers (DeiT):

    • Title: “Training data-efficient image transformers & distillation through attention”
      • Authors: Hugo Touvron, Matthieu Cord, et al.
      • Published: 2021
      • Abstract: 该论文提出了 DeiT 模型,通过知识蒸馏策略解决了 ViT 在小数据集上性能不佳的问题,并展示了蒸馏标记如何提升 ViT 的数据效率。
      • Link: arXiv:2012.12877
  • Swin Transformer:

    • Title: “Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”
      • Authors: Ze Liu, Yutong Lin, et al.
      • Published: 2021
      • Abstract: Swin Transformer 引入了分层和局部注意力机制,大大减少了计算复杂度,并提升了模型的多尺度特征提取能力,适合高分辨率图像任务。
      • Link: arXiv:2103.14030
  • CvT (Convolutional Vision Transformer):

    • Title: “CvT: Introducing Convolutions to Vision Transformers”
      • Authors: Haiping Wu, Bin Xiao, et al.
      • Published: 2021
      • Abstract: CvT 结合了卷积操作与 Transformer,通过卷积嵌入增强了局部特征捕捉能力,同时保留了 Transformer 的全局感知能力。
      • Link: arXiv:2103.15808
2. 代码库与开源项目
  • ViT GitHub Repository:

    • Link: ViT GitHub
    • Description: Google Research 提供的 ViT 实现,包含了用于图像分类的代码和预训练模型,适合在 ImageNet 等数据集上进行微调。
  • DeiT GitHub Repository:

    • Link: DeiT GitHub
    • Description: Facebook AI 提供的 DeiT 实现,展示了数据高效的 ViT 模型训练方法,支持知识蒸馏和小数据集上的训练。
  • Swin Transformer GitHub Repository:

    • Link: Swin Transformer GitHub
    • Description: Microsoft 提供的 Swin Transformer 实现,支持图像分类、目标检测和语义分割等任务,并展示了其多尺度特征提取的优势。
  • PyTorch Image Models (timm):

    • Link: timm GitHub
    • Description: 这个仓库包含了 ViT 及其变体的实现,并集成了多种预训练模型。它是 PyTorch 社区中的热门资源,支持多种图像任务和模型架构。
3. 深入学习的推荐书籍与教程
  • “Deep Learning”

    • Authors: Ian Goodfellow, Yoshua Bengio, Aaron Courville
    • Description: 该书是深度学习领域的经典教材,系统介绍了深度学习的基础理论、模型架构和应用。书中的内容对于理解 ViT 背后的 Transformer 架构具有重要参考意义。
    • Link: Book Link
  • “Transformers for Natural Language Processing”

    • Author: Denis Rothman
    • Description: 虽然该书聚焦于 NLP 中的 Transformer 模型,但 Transformer 的架构原理与 ViT 是相通的。本书深入介绍了 Transformer 的工作机制,并包含大量实用的代码示例。
    • Link: Book Link
  • “Hands-On Vision Transformers with PyTorch”

    • Authors: Lilit Yenokyan, Nayana Prasad
    • Description: 这本书专注于 Vision Transformer 的实际应用,结合了 PyTorch 框架的代码示例,帮助读者从实战中掌握 ViT 模型的构建和优化。
    • Link: Book Link
  • “Dive into Deep Learning”

    • Authors: Aston Zhang, Zachary C. Lipton, Mu Li, Alex J. Smola
    • Description: 本书免费在线提供,涵盖了深度学习的多个领域,包括卷积神经网络和 Transformer。书中提供了大量实践代码,对于理解 ViT 模型的基础知识非常有帮助。
    • Link: Book Link

通过以上参考文献、代码库和学习资源,读者可以深入理解 ViT 模型的核心原理、最新进展,并通过实际代码和教程更好地掌握 ViT 在计算机视觉中的应用。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hello.Reader

请我喝杯咖啡吧😊

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值