一维无限深势阱定态薛定谔方程

项目场景:

本文介绍使用龙格-库塔法(Runge-Kutta method)和弦截法(Secant method)求解一维无限深势阱的定态薛定谔方程的本征值(eigenvalue)和本征函数( eigenfunction ),并进行可视化。

模拟环境

  • Jupyter Notebook
  • python3(numpy,matplotlib)

理论基础:

1.薛定谔方程

1.力场中粒子的薛定谔方程( Schrödinger equation)
− ℏ 2 2 m ∇ 2 Ψ + V ( r ⃗ ) Ψ = E Ψ ( 1 ) \bf{-\hbar^2 \over 2m}\nabla^2\Psi+V(\vec{r})\Psi=E\Psi (1) 2m22Ψ+V(r )Ψ=EΨ1
2.根据(1)式化简得一维无限深势阱中粒子的薛定谔方程(a Particle in an Infinite Potential Well)
V ( x ) = { 0 if  − a < x < a ∞ if  x > a , x < − a \bf V(x) = \begin{cases} 0 &\text{if } -a<x <a\\ \infin &\text{if } x >a , x<-a \end{cases} V(x)={ 0if a<x<aif x>a,x<a

− ℏ 2 2 m d Ψ ( x ) 2 d x 2 + V ( x ) Ψ ( x ) = E Ψ ( x ) ( 2 ) \bf {-\hbar^2 \over 2m}\dfrac{d\Psi(x)^2}{dx^2}+V(x)\Psi(x)=E\Psi(x)(2) 2m2dx2dΨ(x)2+V(x)Ψ(x)=EΨ(x)2

2.龙格-库塔法

1.龙格-库塔法(Runge-Kutta method)
四阶龙格-库塔法是常用的常微分方程数值计算方法,局部截断误差为五阶小量,计算精度相当高。

  • 对于一阶微分方程,若在给定区间进行划分,第(i+1)个点的函数值 y i + 1 y_{i+1} yi+1与第i个点的函数值 y i y_{i}
  • 5
    点赞
  • 50
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值