Hierarchical combinatorial deep learning architecture for pancreas segmentation-笔记

Network architecture

网络结构来源于RCF network。RCF基于Holistically-nested Edge Detection (HED) network,是一个边缘检测结构,目的是提取自然图片的显著的边缘和物体的边界。
网络结构如图:
这里写图片描述
虽然这个图画的不太常规,好像很厉害,但是有类似的结构。4个pooling,5个stages,13个卷积。每个stage后边加特征融合层,对5个stage提取的特征进行融合。每个stage之间的卷积核大小为1X1,通道21。将每个stage不同卷积层输出的特征进行堆积,得到混合特征,然后通过一个1X1@1的卷积层。特征融合层厚,通过反卷积对特征图进行上采样,得到和原图一样大小的特征图。
使用双线性插值对不同的卷积核进行初始化。
网络具体细节如下:
这里写图片描述
对原图进行裁剪。通过平移和缩放进行数据增强【28】。使用BSDS500【26】数据集进行迁移学习。【29】证明了迁移学习对医学图像任务的重要性。对label进行处理,将目标区域变为0黑色,背景变为255白色。
训练过程
优化过程(其实就是后处理):分为3步,融合,最大化相连区域,阈值滤波器处理。融合,一系列的概率图被融合为1个新图,其实就是将5个stage输出的每个特征图,进行二值化(大于0为255)后相加,然后取平均值,即除以5。最大化相连区域,首先将融合后的图像进行二值化(也是大于0为255),找到二值化图中,相邻非零像素,然后得到几个相连区域,然后选择最大面积的区域;阈值滤波器处理,使用得到这个最大区域对原图进行分割。
评价标准:
Precision,Recall,Dice Similarity Coefficient,Jaccard similarity coefficient。

损失函数

这里写图片描述
I为每个像素;K表示5个stage,因为每个stage都会有输出;最后一项为经过融合(优化过程第一步)后的概率图的损失。
这里写图片描述
这里写图片描述
为了平衡正负样本,使用超参数 λ (训练时使用1.1)。+代表原图正样本,-代表原图负样本。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值