人工神经网络优化算法,进化算法优化神经网络

本文探讨了神经网络在求解优化问题中的应用,以及如何使用遗传算法来优化bp神经网络。遗传算法的使用不仅提高了bp神经网络的训练速度,而且在训练完成后,预测的准确性也得到增强。文章还介绍了计算机学习的分类、不同类型的算法,如决策树、贝叶斯分类、粗糙集、神经网络、K近邻、支持向量机和群智能算法,并讨论了它们的特点和适用场景。
摘要由CSDN通过智能技术生成

神经网络算法可以求最优解嘛?

神经网络可以做优化问题,但不一定能找到最优解。

逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理;这一过程可以写成串行的指令,让计算机执行。

直观性的思维是将分布式存储的信息综合起来,忽然间产生的想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1、信息是通过神经元上的兴奋模式分布存储在网络上。

2、信息处理是通过神经元之间同时相互作用的动态过程来完成的。神经网络:思维学普遍认为,人类大脑的思维分为抽象(逻辑)思维、形象(直观)思维和灵感(顿悟)思维三种基本方式。

人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。

虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

谷歌人工智能写作项目:小发猫

计算机学习的分类

分类;数据挖掘分类是数据挖掘的重要任务之一,分类在实际应用中有广泛的应用,如医疗事业、信用等级等常见的神经网络结构。近年来,分类方法得到了发展,本文对这些方法进行了归纳分析,总结了今后分类方法发展的方向。

1引言分类是学会一个分类函数或分类模型,该模型能把数据库中的数据项映射到给定类别中的某一个。分类可用于提取描述重要数据类的模型或预测未来的数据趋势。

分类可描述如下:输入数据,或称训练集是一条条记录组成的。每一条记录包含若干条属性,组成一个特征向量。训练集的每条记录还有一个特定的类标签与之对应。该类标签是系统的输入,通常是以往的一些经验数据。

一个具体样本的形式可为样本向量:。在这里vi表示字段值,c表示类别。

分类作为数据挖掘的一个重要分支,在商业、医学、军事、体育等领域都有广泛的应用,在过去的十多年中引起很多来自不同领域学者的关注和研究。

除了基本的统计分析方法外,数据挖掘技术主要有:神经网络、决策树、粗糙集、模糊集、贝叶斯网络、遗传算法、k近邻分类算法与支持向量机等。

不同的分类器有不同的特点,目前有三种分类器评价或比较尺度:1)预测准确度。预测准确度是用得最多的一种比较尺度,特别是对于预测型分类任务,目前公认的方法是10折分层交叉验证法;2)计算复杂度。

计算复杂度依赖于具体的实现细节和硬件环境,空间和时间的复杂度问题将是非常重要的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值