反向传播算法带动了业界使用两层神经网络研究的热潮

反向传播算法(BP)是多层神经网络的关键学习算法,通过梯度下降法调整权重以最小化输出误差。该算法通过前向传播计算输出,然后反向传播误差以更新权重,实现网络的优化。BP网络能处理复杂的非线性关系,常用于机器学习和深度学习中的模型训练。虽然存在收敛速度慢和局部极小点问题,但BP算法仍然是神经网络训练的标准方法。
摘要由CSDN通过智能技术生成

反向传播算法是什么?

反向传播算法,简称BP算法,适合于多层神经元网络的一种学习算法。它建立在梯度下降法的基础上。

BP网络的输入输出关系实质上是一种映射关系:一个n输入m输出的BP神经网络所完成的功能是从n维欧氏空间向m维欧氏空间中一有限域的连续映射,这一映射具有高度非线性。

它的信息处理能力来源于简单非线性函数的多次复合,因此具有很强的函数复现能力。这是BP算法得以应用的基础。反向传播算法动机简介反向传播算法被设计为减少公共子表达式的数量而不考虑存储的开销。

反向传播避免了重复子表达式的指数爆炸。然而,其他算法可能通过对计算图进行简化来避免更多的子表达式,或者也可能通过重新计算而不是存储这些子表达式来节省内存。

谷歌人工智能写作项目:神经网络伪原创

如何理解神经网络里面的反向传播算法

反向传播算法(Backpropagation)是目前用来训练人工神经网络(Artificial Neural Network,ANN)的最常用且最有效的算法写作猫

其主要思想是:(1)将训练集数据输入到ANN的输入层,经过隐藏层,最后达到输出层并输出结果,这是ANN的前向传播过程;(2)由于ANN的输出结果与实际结果有误差,则计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;(3)在反向传播的过程中,根据误差调整各种参数的值;不断迭代上述过程,直至收敛。

反向传播算法的思想比较容易理解,但具体的公式则要一步步推导,因此本文着重介绍公式的推导过程。1. 变量定义上图是一个三层人工神经网络,layer1至layer3分别是输入层、隐藏层和输出层。

如图,先定义一些变量:表示第层的第个神经元连接到第层的第个神经元的权重;表示第层的第个神经元的偏置;表示第层的第个神经元的输入,即:表示第层的第个神经元的输出,即:其中表示激活函数。

2. 代价函数代价函数被用来计算ANN输出值与实际值之间的误差。

常用的代价函数是二次代价函数(Quadratic cost function):其中,表示输入的样本,表示实际的分类,表示预测的输出,表示神经网络的最大层数。

3. 公式及其推导本节将介绍反向传播算法用到的4个公式,并进行推导。如果不想了解公式推导过程,请直接看第4节的算法步骤。

首先,将第层第个神经元中产生的错误(即实际值与预测值之间的误差)定义为:本文将以一个输入样本为例进行说明,此时代价函数表示为:公式1(计算最后一层神经网络产生的错误):其中,表示Hadamard乘积,用于矩阵或向量之间点对点的乘法运算。

公式1的推导过程如下:公式2(由后往前,计算每一层神经网络产生的错误):推导过程:公式3(计算权重的梯度):推导过程:公式4(计算偏置的梯度):推导过程:4. 反向传播算法伪代码输入训练集对于训练集中的每个样本x,设置输入层(Input layer)对应的激活值:前向传播:, 计算输出层产生的错误:反向传播错误:

如何理解神经网络里面的反向传播算法

反向传播算法(BP算法)主要是用于最常见的一类神经网络,叫多层前向神经网络,本质可以看作是一个general nonlinear estimator,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值