神经网络计算公式

本文详细介绍了神经网络中的参数计算、卷积神经网络的参数量、输出尺寸以及全连接网络的参数量。涵盖了卷积操作的K_h, K_w, C_in, C_out等关键参数,以及输出图像大小的计算方法。适合深度理解神经网络工作原理的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

神经网络计算公式

参数说明

名称含义
K_h卷积核的高
K_w卷积核的宽
C_in输入通道数
C_out输出通道数
out_width输出图像的宽度
out_height输出图像的高度
in_width输入图像的宽度
in_height输入图像的高度
Ppadding,为填充大小
Sstride,为步长

一、卷积神经网络

  1. 参数量:
    Params = K_h × K_w × C_in × C_out + C_out
    其中,K_h × K_w × C_in × C_out代表权重数,C_out 代表偏置数

  2. 卷积后输出图像大小
    out_width = (in_width - K_w + 2P)/ S + 1(向下取整)
    out_height = (in_height - K_h + 2P) / S + 1(向下取整)

  3. 池化后输出图像大小
    out_width = (in_width - K_w )/ S + 1(向下取整)
    out_height = (in_height - K_h ) / S + 1(向下取整)

二、全连接神经网络

  1. 参数量:
    Params = C_in × C_out + C_out
    其中 C_in × C_out 代表权重数,C_out代表偏置数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值