K最近邻算法(介绍)

问题

用K最近邻算法创建分类系统
学习特征抽取
学习回归,即预测数值
学习K最近邻算法的应用案例和局限性

K最近邻(k-nearest neighbours, KNN)算法

K最近邻算法是指在一个坐标系中(前提是把元素放入坐标系【So,问题来了,怎么把他们放入坐标系?他们在坐标系的位置怎么确定?】),其中一个点的特性或者数值可以由离他最近的几个点求得,(原理是因为,他们所处的位置差不多,其会具有相当大的共性,他们之间更相似一些,这是一种猜测)
    想法一:其实不用坐标系也可以,可以使用集合,对于一个未知的集合,可以与其他集合做交集,与其交集最大的几个集合与他最相似
        【其实还是寻找共性,判断相似】
    【So,问题是什么叫相似?相似的程度如何判定?】

第一个问题:特征抽取

对于不同的系统,不同元素需要考虑的特点不同,可以根据自己的标准将各元素进行数字化,以一个数值集合的形式表示一个元素的特征,
    比如对于长方体,可以由长宽高三个标准度量,形成一个(x,y,z)的集合
能否挑选合适的特征事关KNN算法的成败

第二个问题:相似程度的判定

现在已经使用一套标准将元素数值化,
    一个元素可能有n个数值来表示,那么其就可以放入一个n维坐标系,
        虽然当维数超过4时,我们很难想象这个坐标系具体的样子,可是这并不妨碍我们计算相似程度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值