深度解读K12在线教育市场的发展

2018年,在线教育增长十分迅猛,资本市场上的在线教育公司格外热闹,如美股IPO的尚德机构、朴新教育、精锐教育等,港股IPO的新东方在线、沪江教育等。
根据前瞻产业研究院发布的《2019中国在线教育行业市场前瞻分析报告》,随着互联网普及、用户使用习惯的形成、企业的市场推广等原因,未来几年,在线教育用户规模将保持15%左右的速度继续增长,到2024年预计突破4亿人,总体市场规模将突破4500亿元。

在这里插入图片描述

《2019中国在线教育行业市场前瞻分析报告》预测中国在线教育市场规模

在在线教育行业中,K12是其中不可忽视的一个细分领域。自2012年以来,K12在线教育开始成为投资风口,中国K12在线教育行业的市场规模基本保持30%以上的高增长,即使在2015年降至21.4%后也能够快速反弹,在2017年攀升至51.8%的新高位,相应的市场规模达到298.7亿元。到2018年,行业多次洗牌,头部玩家几经更替,K12在线教育企业逐渐走出迷茫的萌芽期,向着更加成熟的方向迈进。

在这里插入图片描述

《2019中国K12教育行业市场前瞻分析报告》统计的K12市场规模变动情况

国内K12在线教育的主要“三条赛道”。

第一条赛道,新东方、好未来等老牌培训机构在网端积极布局,如扶持改造各自旗下在线教育平台,促进用户线下转线上,其财报数据也显示,在线领域K12用户与中学板块营收逐年稳步增长。

另一方面, 51Talk、掌门1对1等在线教育“新贵”崭露头角,其中,专注菲律宾外教1对1的51Talk已成为在线教育赴美上市的第一股。

第三条赛道,则是从智能学习工具入手,如学霸君、作业盒子等自称人工智能科技公司的队伍。他们以K12智能学习工具起家,在获取K12行业一手数据的同时,也挖掘了部分付费用户,随后试水教育培训业务,上线1对1、付费答疑等教育产品。

不同商业模式下,K12在线教育强势增长

新东方公布的2018年财报显示,K12业务全年收入增长约46%,贡献总收入约59%。全年净收入同比增长约36%,学生报名人数同比增长约30.3%。新东方首席财务官表示,2019财年新东方计划在现有城市进一步增加20-25%的教室面积,主用于K12业务。同时将通过线上K12教育服务,将业务进一步拓宽到更多偏远地区。

在这里插入图片描述

新东方股价变动情况

专注于K12教育的好未来2018财年第三季度财报显示,当季营收中,通过线下班级授课的培优占比73%,增长相对稳定;VIP面授课1对1占比9%,增长51.4%;而主攻线上的网校业务占比是7.8%,涨幅达到175%。

在这里插入图片描述

好未来股价变动情况

如果新东方在线、好未来只是传统培训机构的网端布局,那以51Talk、掌门1对1为代表的纯线上教育机构则天然拥有互联网基因,开创了一种新型商业模式。

与传统网校采用的“直播+录播”课、大小班兼具的综合模式不同,K12在线教育机构大都选了“1对1”互动教学模式。在线1对1是指点对点精准化的在线教学模式,比如主打真人外教一对一的51Talk,这种模式现在已经成为K12在线教育领域竞争者们参与的主流赛道。

51Talk是国内第一家赴美上市的在线教育机构,先后获得DCM、红杉资本等投资的51Talk,是国内第一家赴美上市的在线教育公司。今年12月17日,51Talk发布2018年第三季度财务报告。报告显示,第三季度现金收入4.245亿元,51Talk聚焦菲教青少一对一业务为公司发展起到了积极的促进作用,该业务现金收入同比增长65.9%。净营收3.032亿元,同比增长28.4%。毛利率为63.8%。现金收入中青少业务占比高达87.1%。

前两个赛道商业模式不同,但“真人教学,在线互动”的核心思路不变,另外还有一支充满科技感和自带AI属性的“工具型”公司,如以作业帮、学霸君、猿题库为代表的拍照搜题类工具,这些公司则加入了更多的科技元素,他们一般使用图像识别和智能分析技术,帮助学员在线答疑。一些公司通过智能硬件获取前期用户,然后利用庞大的用户群资源,更容易实现付费转化。

工具类在线教育公司还可以通过“作业”、“题库”这些平台走进学校,连接起学校、教师、学生和家长各方。借此获取第一手用户数据、有利于后期开发实现个性化教育产品设计,其中代表企业有一起作业、作业盒子等。

K12在线教育成为00后的新需求,二三线城市市场亟待填补

在线教育的蓬勃发展与受教育人群的互联网使用习惯息息相关,第一批互联网化的80后用户直接影响到高等教育与职业教育的线上转化;K12阶段的95、00其互联网化也已进入高速增长通道,这将拉动K12教育互联网化大潮开启;00后中小学生与互联网的高度融合,更使得K12教育信息化成为一种需求。

在这里插入图片描述

《2019中国在线教育行业市场前瞻分析报告》显示社会教育互联网化需求旺盛

在线教育的优势在于灵活便捷、资源丰富、省时省力、家长可监管;同时教学视频也可支持录屏、保存、回放等功能;并且能结合人工智能、虚拟现实等技术满足用户多元化、个性化需求,一对一的教学还可以对每个学员做针对性指导陪伴式学习,做到因材施教,逐步实现个性化教学,弥补传统线下教育存在的不足和缺陷。

在这里插入图片描述
但需要考虑的是,当一对一的方式成为在线教育企业的标配,当这些企业的课程严重同质化之后,就会很难形成企业的核心竞争力。企业必须通过大量营销,快速抢占市场,为后续进入者设立门槛。否则用户和规模难以增长;但投入增多又会增加获客成本,难获盈利,这是多数在线培训机构面临的两难困境。在市场优胜劣汰的激烈竞争中,行业玩家会不断减少,资源向头部汇集,谁能站稳脚跟也就越有望成为步入稳健盈利阶段的“独角兽”。除此之外,对众多K12在线企业来说,虽然K12教育用户多分布在一二线城市,区域内竞争异常激烈,而三四线城市还远未饱和,这些城市的在线学习的需求亟待填补。

编辑:飞进科技

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值