Keras调用model.load_weights时报错

在Keras中,使用子类化Model进行深度学习模型构建时,保存并加载H5格式权重会报错,因为需要先构建模型定义输入形状。解决方案是在加载权重前调用`model.build(input_shape=(None,82))`来建立模型结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

报错:ValueError: Unable to load weights saved in HDF5 format into a subclassed Model which has not created its variables yet. Call the Model first, then load the weights.

模型框架使用Sequential()时不会出现如上错误。但本人使用了keras下Model类,继承该类实现模型的搭建。训练时保存网络权重参数,代码如下

self.model.save_weights("vehicular_DQN.h5")

加载参数代码如下

self.model.load_weights("vehicular_DQN.h5")

运行时出现上述报错,报错原因是以H5格式加载子类模型的参数时,需要提前建立模型,规定输入网络的shape。格式为model.build(input_shape =(<input_dim>))。代码样例如下

self.model.build(input_shape =(None,82))
self.model.load_weights("vehicular_DQN.h5")
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值