PyTorch入门实战教程笔记(十一):梯度相关操作2

PyTorch入门实战教程笔记(十一):梯度相关操作2

Loss及其梯度

  1. 均方差Mean Squared Error (MSE)
    MSE的基本形式为:loss = Σ[y - (xw + b)]2 ,这里要注意 mse与L2-norm是不同的 L2-norm = || y - (xw+b) ||2 其运算为√(Σ(yi - y0i)2), 故在程序中实现mse,通过下面的程序段:
torch.norm(y-pred, 2).pow(2)   #运算后在平方

其梯度求解数学表示:

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值