经典神经网络
Star·端木
知识的价值不在于占有,而在于使用。
展开
-
深度学习之CNN入门&LeNet框架
深度学习之CNN入门&LeNet框架:1.卷积神经网络:①Convolution(卷积):从输入的一小块数据中学到图像的特征,并可以保留像素间的空间关系。②ReLU:ReLU 的目的是在 ConvNet 中引入非线性③Pooling:平均化,加和,最大化(效果更好):分开应用到各个特征图④Fully connected layers: 使用这些特征把输入图像基于训练数据集...原创 2019-09-18 20:46:00 · 521 阅读 · 0 评论 -
深度学习之经典神经网络框架详解(七):GoogLeNet:Inception-v3
Rethinking the Inception Architecture for Computer Vision简述:虽然增加的模型大小和计算成本能够提高网络的性能(如:VGG等),但其计算量过大,无法在对内存或计算资源有限制的场合处理数据。GoogLeNet 在设计之初就考虑了内存和计算资源,本文作者通过适当的分解卷积和积极的正则化来尽可能地有效利用增加的计算。实验证明,设计的网络模型取得...原创 2019-10-07 19:08:28 · 964 阅读 · 0 评论 -
深度学习之经典神经网络框架详解(六):ResNet-v2残差神经网络
论文 Deep Residual Learning for Image Recognition简述:本文分析了残差块后面的传播形式,表明当使用恒等映射作为skip connections(跳跃连接)和after-addition activation(可以理解为相加在激活之后)时,正向和反向信号可以直接从一个块传播到任何其他块。并提出了一种新的残差单元,使网络训练更加简单且具有很强的泛化能力。...原创 2019-09-30 10:24:31 · 2065 阅读 · 0 评论 -
深度学习之经典神经网络框架详解(五):Batch Normalization(BN层)网络详解
论文Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift简述:由于训练过程中各层输入的分布随前一层参数的变化而变化,会导致训练速度的下降(低学习率和注意参数初始化)且很难去训练模型。为此作者提出Batch Normalization,解决在训练过程中,中间层数据...原创 2019-09-27 15:37:45 · 2222 阅读 · 4 评论 -
(转)深度学习中的highway network、ResNet、Inception
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。 ...转载 2019-09-22 11:32:13 · 475 阅读 · 0 评论 -
深度学习之经典神经网络框架详解(四):ResNet-v1残差神经网络
Deep Residual Learning for Image Recognition简述:残差神经网络在2015年ILSVRC比赛中获得冠军,且多个方面获得了第一名。随着网络深度的增加,梯度在反向传播过程中会逐渐消失,导致无法对前面的网络层的权重进行有效的调整,致使准确率逐渐饱和然后迅速下降。本文提出了一个残差学习框架来简化网络训练,实验表明该网络更易优化,且大幅增加深度的同时获得高的精度...原创 2019-09-23 16:32:35 · 3487 阅读 · 5 评论 -
深度学习之经典神经网络框架详解(三):GoogLeNet:Inception-v1
GoogLeNet-v1:Going deeper with convolutions Christian简述:GoogLeNet-v1获得了ILSVRC14的冠军,该体系结构的特点是对网络内部计算资源的改进利用,允许增加网络的深度和宽度,同时保持计算预算不变,深度22层,参数却比AlexNet、VGGNet少得多,建立了一种叫作‘Inception’的神经网络架构,且分类性能优于当时的技术水...原创 2019-09-20 18:21:36 · 759 阅读 · 0 评论 -
深度学习之经典神经网络框架详解(二):VGGNet
深度学习之经典神经网络框架(二):VGGNetILSVRC2014比赛分类项目的第二名,构造了16~19层深的卷积神经网络,证明了增加网络的深度能够在一定程度上影响网络最终的性能,使错误率大幅下降,同时拓展性又很强,迁移到其它图片数据上的泛化性也非常好。框架:问题or特点:The main contribution is a thorough evaluation of networks...原创 2019-09-18 21:02:16 · 1296 阅读 · 0 评论 -
深度学习之经典神经网络框架详解(一):AlexNet
深度学习之经典神经网络框架(一):AlexNet论文:ImageNet Classification with Deep Convolutional Neural Networks深层卷积神经网络,获得12年ImageNet LSVRC的冠军,本文设计的模型特点有:加入ReLU及两个高效的GPU使训练更快;使用Dropout、Data augmentation、重复池化,防止过拟合;LRN归一...原创 2019-09-18 20:55:21 · 1174 阅读 · 0 评论 -
深度学习之经典神经网络框架详解(八):GoogLeNet:Inception-v4
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning简述:残差神经网络(ResNet)框架在2015年ILSVRC挑战赛中达到了当时最好的性能,作者考虑将Inception与ResNet相结合是否有益处,并通过实验证明了残差神经网络的加入能够显著加速Inception的训练且表现更好。...原创 2019-10-10 21:34:58 · 655 阅读 · 1 评论