Fully-Convolutional Siamese Networks for Object Tracking
项目网页 http://www.robots.ox.ac.uk/~luca/siamese-fc.html
tensorflow+python代码:https://github.com/www0wwwjs1/tensorflow-siamese-fc
一、背景简介
传统的目标跟踪算法,要么用相关滤波,如TLD、Struck、KCF等,只能在线学习(用当前视频中的数据),限制了学习模型的丰富程度;要么用SGD方法(DeepLearning)对网络进行微调,虽然能达到最有效果,但会使速度下降,做不到实时跟踪。本论文提出一种新的全卷积孪生网络(SiamFC)作为基本的跟踪算法,这个网络在ILSVRC15的目标跟踪视频数据集上进行端到端的训练。跟踪器在帧率上超过了实时性要求,尽管结构非常简单,但在多个benchmark上达到最优的性能。
本文的工作:
(1)训练一个Siam网络,利用全卷积的结构,使得输入大小不受限制。来定位一个更大的搜索图像中,与范例图像最匹配的区域。
(2)利用双线性层计算了滑动窗口的两个输入之间的相互关系,实现了密集高效的滑动窗口评价(score map)。
(3)巧妙使用ILSVRC15的数据集(正常的tracking训练数据比较匮乏)。