SCIKIT-LEARN与GBDT使用案例

本文介绍了如何在Python中使用SCIKIT-LEARN库进行GBDT(梯度提升决策树)的安装、应用和调参。通过实例展示了GBDT在处理数据集上的操作,包括训练和测试数据的准备,以及与SVM的性能对比。调参部分指出n_estimators和max_depth参数对模型表达能力的影响,并以误差百分比均值作为评估标准。
摘要由CSDN通过智能技术生成

安装

SCIKIT-LEARN是一个基于python/numpy/scipy的机器学习库
windows下最简单的安装方式是使用winpython进行安装
WinPython地址

GBDT使用

这段代码展示了一个简单的GBDT调用过程
数据维数24,训练数据1990,测试数据221

import numpy as np
from sklearn.ensemble import GradientBoostingRegressor
gbdt=GradientBoostingRegressor(
  loss='ls'
, learning_rate=0.1
, n_estimators=100
, subsample=1
, min_samples_split=2
, min_samples_leaf=1
, max_depth=3
, 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值