GBDT浅谈以及代码实现

本文探讨了GBDT的基本原理和优势,包括CART树的构建和梯度提升过程。作者分享了自己的Python代码实现,虽然简单且未加入正则化,但提供了理解模型的基础。文章还提及了对xgboost源码的学习计划以及链接到其他GBDT实现的解读资源。
摘要由CSDN通过智能技术生成

GBDT作为近年很热门的模型,其性能非常突出,用途也是涵盖了从特征选择到分类、回归,被广大从业者和爱好者所使用。

网上关于gbdt的原理和数学推导已经有很多,我就谈谈我个人的浅见,如有错误还望指正。同时还附上我自己实现的简单的python代码,功能比较简单,并且性能也不高,只作为自己对模型的理解,欢迎拍砖。

从大的框架来说,主要可以分解成两个部分:构建树和梯度提升。GBDT中的树一般都是CART,即分类回归树,这是GBDT强大的第一个原因。分类回归树能同时处理分类和回归问题,根据不同的问题类型,采用不同的属性分裂准则。在实现的时候,个人觉得,如何高效地分裂属性是需要好好考虑的。参考xgboost的实现方式,其对列进行了采样,不仅提升了性能,也防止了过拟合。第二个强大的原因就是梯度提升,在前一颗树的残差基础上进行拟合,不得不感叹是一个非常好的思路。让我想到了孔子的“吾日三省吾身”,也就是每次训练完之后,就看看自己和圣人的差距有多少,然后在下一次训练的时候尽量去弥补这个差距。当然了,前提是圣人不会再提升了,否则自己永远也赶不上了。在具体实现的时候,如何体现“梯度提升”,如何对函数求导也是一个难点。好在在friedman的论文中,已经提供了一个比较简便的方法,推导也在论文中给出,因此我的代码就参考了论文中算法6的步骤,即对类似softmax的输出求残差,实现起来比较容易。

我实现的GBDT模型很简单,都没有加入正则化,而且分类的性能好像也不高,跑起来又费时费力,所以欢迎提出改进建议和意见。

GBDT(Gradient Boosting Decision Tree)是一种集成学习算法,它通过迭代地训练决策树来提高分类性能。下面是一个简单的示例代码,演示如何使用Python中的sklearn库实现GBDT分类模型。 首先,我们需要导入必要的库: ```python from sklearn.datasets import load_iris from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score ``` 接着,我们使用鸢尾花数据集作为示例数据: ```python data = load_iris() X = data['data'] y = data['target'] ``` 然后,我们将数据划分为训练集和测试集: ```python X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 现在,我们可以定义一个GBDT分类器并拟合训练数据: ```python clf = GradientBoostingClassifier() clf.fit(X_train, y_train) ``` 最后,我们可以使用测试数据评估模型的性能: ```python y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) ``` 完整的代码如下: ```python from sklearn.datasets import load_iris from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score data = load_iris() X = data['data'] y = data['target'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) clf = GradientBoostingClassifier() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy) ``` 这个示例演示了如何使用sklearn库实现GBDT分类模型。请注意,这只是一个简单的示例,实际应用中可能需要进行更多的数据预处理和参数调整。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值