sparkmllib算法之特征转换-第一篇(StopWordsRemover)

本文介绍了Apache Spark的StopWordsRemover功能,用于从文本数据中移除常见无意义的停止词。内容包括停止词的定义、StopWordsRemover的工作原理、示例演示以及代码实现,展示了如何在不同语言中使用该工具去除停用词,以提高文本处理的效果。
摘要由CSDN通过智能技术生成

0、停止词介绍

停止词是应该从输入中排除的词,通常是因为词经常出现而且没有那么多含义。

StopWordsRemover 将字符串序列(例如,Tokenizer 的输出)作为输入,并从输入序列中删除所有停用词。停用词列表由 stopWords 参数指定。某些语言的默认停用词可通过调用访问 StopWordsRemover.loadDefaultStopWords(language),其中可用选项为“丹麦语”,“荷兰语”,“英语”,“芬兰语”,“法语”,“德语”,“匈牙利语”,“意大利语”,“挪威语” “,”葡萄牙语“,”俄语“,”西班牙语“,”瑞典语“和”土耳其语“。布尔参数 caseSensitive 指示匹配项是否区分大小写(默认为 false)。

1、示例

1.1、数据准备

id  | raw
----|----------
0   | [I, saw, the, red, baloon]
1   | [Mary, had, a, little, lamb]

1.2、应用停用词后结果

id  | raw                         | filtered
----|-----------------------------|--------------------
0   | [I, saw, the, red, baloon]  | [saw, red, baloon]
1   | [Mary, had, a, little, lamb]|[Mary, little,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值