极大似然估计

贝叶斯公式

P(A|D)=P(D|A)P(A)P(D) P ( A | D ) = P ( D | A ) P ( A ) P ( D )

给定某些样本D,在这些样本中计算某结论 A1 A 1 A2 A 2 An A n 出现的概率,即 P(Ai|D) P ( A i | D )
在给定样本的情况下,哪一组参数出现的概率最大,我们就认为哪组参数最有可能出现
maxP(Ai|D)=maxP(D|Ai)P(Ai)P(D)=max(P(D|Ai)P(Ai)) m a x P ( A i | D ) = m a x P ( D | A i ) P ( A i ) P ( D ) = m a x ( P ( D | A i ) P ( A i ) )

P(D) P ( D ) 是样本发生的概率,样本已经改定所以, P(D) P ( D ) 是常数
我们在认为在没有其他的条件下, P(Ai) P ( A i ) 近似相等,得到 max(P(D|Ai)) m a x ( P ( D | A i ) ) ,即哪一个参数使得样本最大可能的发生,或者说是哪个参数使样本发生的概率最大
max(P(Ai|D))max(P(D|Ai)) m a x ( P ( A i | D ) ) → m a x ( P ( D | A i ) )

极大似然估计

设总体分布为 f(x,θ) f ( x , θ ) X1 X 1 , X2 X 2 , X3 X 3 Xn X n 为该总体采样得到的样本,因为 X1 X 1 , X2 X 2 , X3 X 3 Xn X n 独立同分布,于是它们的联合密度函数为:

L(x1,x1...xn;θ1,θ2...θk)=inf(x1;θ1,θ2...θk) L ( x 1 , x 1 . . . x n ; θ 1 , θ 2 . . . θ k ) = ∏ i n f ( x 1 ; θ 1 , θ 2 . . . θ k )

上式为样本发生的概率,或者说哪个参数使取的的样本与真实的样本最相似,即哪个参数使样本发生的概率最大,或者说是在 θ θ 的所有的可能取值中,找到一个能使数据出现的可能性的最大的值。
这里 θ θ 被看做是固定但未知的参数,反过来因为样本已经存在,可以看成 x1,x1...xn x 1 , x 1 . . . x n 是固定的, L(x,θ) L ( x , θ ) 是关于 θ θ 的函数,即似然函数
求参数 θ θ 的值,使得似然函数取极大值,这种方法就是 极大似然估计

极大似然估计具体实践

在实践中由于求导数的需要,往往将似然函数取对数,同时连乘容易造成下溢,通常使用对数似然,若对数似然函数可导,可通过求导的方式,解下列方程组,得到驻点,然后分析该点是极大值点

logL(θ1,θ2...θk)=inlogf(x1;θ1,θ2...θk) l o g L ( θ 1 , θ 2 . . . θ k ) = ∑ i n l o g f ( x 1 ; θ 1 , θ 2 . . . θ k )

L(θ)θi=0,i=1,2...k ∂ L ( θ ) ∂ θ i = 0 , i = 1 , 2... k

极大似然估计实例

找出与样本分布最接近的概率分布模型
10次抛硬币的结果是:正正反正正正反反正正
假设 p p 是每次抛硬币结果为正的概率,则得到这样结果的计算概率是:

P=p7(1p)3

最优解为: p=0.7 p = 0.7
抛硬币的过程中,进行了 N N 次独立实验,n次朝上, Nn N − n 次朝下,假设朝上的概率为 p p ,使用对数似然作为目标函数:
f(n|p)=log(pn(1p)Nn)h(p)

h(p)p=npNn1p0 ∂ h ( p ) ∂ p = n p − N − n 1 − p → 0

p=nN p = n N

正太分布的极大似然估计

若给定一组样本 X1 X 1 , X2 X 2 , X3 X 3 Xn X n ,已知它们来自于高斯分布 N(μ,σ) N ( μ , σ ) ,试估计参数 μ,σ μ , σ
按照MLE的过程分析
高斯分布的概率密度函数:

f(x)=12πσe(xμ)22σ2 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2

Xi X i 的样本 xi x i 带入,得到:
L(x)=in12πσe(xiμ)22σ2 L ( x ) = ∏ i n 1 2 π σ e − ( x i − μ ) 2 2 σ 2

取对数
l(x)=login12πσe(xiμ)22σ2 l ( x ) = l o g ∏ i n 1 2 π σ e − ( x i − μ ) 2 2 σ 2

=inlog12πσe(xiμ)22σ2 = ∑ i n l o g 1 2 π σ e − ( x i − μ ) 2 2 σ 2

=(inlog12πσ)+(in(xiμ)22σ2) = ( ∑ i n l o g 1 2 π σ ) + ( ∑ i n − ( x i − μ ) 2 2 σ 2 )

=n2log(2πσ2)12σ2in(xiμ)2 = − n 2 l o g ( 2 π σ 2 ) − 1 2 σ 2 ∑ i n ( x i − μ ) 2

将目标函数对参数 μ,σ μ , σ 分别求偏导,很容易得到 μ,σ μ , σ 的式子:
μ=1ninxi μ = 1 n ∑ i n x i

σ2=1nin(xiμ)2 σ 2 = 1 n ∑ i n ( x i − μ ) 2

上述结论与矩估计的结果是非常一致的,并且意义非常明显,样本的均值为高斯分布的均值,样本的伪方差为高斯分布的方差,经典意义上的方差,分母是 n1 n − 1 ,在似然估计中求得方差是 n n <script type="math/tex" id="MathJax-Element-75">n</script>

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值