量化交易入门

 

          提到量化交易如何入门,很多人都是列了长长的书单,书自然都是好书,但对于想入门的人来说未免太繁杂,兴趣一下就被打压了。其实一个想入门的门外人,最想要的其实是一个简单快速的入门方法,不想看了那么多书,却还写不了一个量化策略。

         这里,就为新手准备了这篇文章--十行代码带你量化交易入门

         学习内容:

         学会写一个简单的单股票均线策略

         理解策略的基本框架

        学会建立连接实盘的模拟交易,并使其自动发送交易的信号到微信

        首先,进入JoinQuant,点击导航栏我的策略,新建策略,进入策略编辑画面,如图。左侧是编写策略代码,右侧是策略运行结果。我们就在左侧写策略代码。

下面教你用10行代码写个量化交易策略——单股票均线策略

1 确定策略内容与框架

若昨日收盘价高出过去20日平均价今天开盘买入股票 
若昨日收盘价低于过去20日平均价今天开盘卖出股票

只操作一只股票,很简单对吧,但怎么用代码说给计算机听呢?

想想人是怎么操作的,应该包括这样两个部分

既然是单股票策略,事先决定好交易哪一个股票。每天看看昨日收盘价是否高出过去20日平均价,是的话开盘就买入,不是开盘就卖出。每天都这么做,循环下去

对应代码也是这两个部分

def initialize(context): 

     用来写最开始要做什么的地方 

def handle_data(context,data): 

     用来写每天循环要做什么的地方

答疑与延伸:

def后面的空格和最后的冒号不能少!符号都要用英文输入法!

为什么这么写?就这么规定的,先别管了。handle_data 按天循环时,如此处,其中的操作都是在9:30执行。

毫无编程基础?,丝毫不懂变量,函数,if else的,还是先到量化课堂的编程部分学习下python语言吧。

几乎所有策略都基于这个基本的策略框架:先初始化,然后循环操作
初始化,即最开始要做的事情,如选定股票,设置变量、参数等等 
周期循环:即每个周期要做的事情,如计算指标,买入卖出等,周期可能是分钟,天等,本文策略的周期是一天。当你要做一些盘中短线操作的时候,周期就要调成分钟,先别着急会遇到的。

2 初始化

我们要写设置要交易的股票的代码,比如 兔宝宝(002043)

def initialize(context):

    g.security = '002043.XSHE'# 存入兔宝宝的股票代码

答疑与延伸:

“g.”是什么?全局变量前都要写”g.”,全局变量就是全局都能用的变量,一般变量只能在该函数下使用。如security不加”g.”,只能在第一部分即initialize里用,不能在第二部分handle_data里用。不懂什么是变量的,到量化课堂的python编程里学习下基础内容,或者问问度娘。

“XSHE”是什么? 股票代码使用时要加后缀,深交所股票代码后缀为 “.XSHE “,上交所股票代码后缀为 “.XSHG”。

代码中“#”是什么?”#“后的内容都是注释,是为代码做说明的,不会被计算机当做代码处理。

3 获取收盘价与均价

首先,获取昨日股票的收盘价

# 用法:变量 = data[股票代码].close 

last_price = data[g.security].close# 取得最近日收盘价,命名为last_price

然后,获取近二十日股票收盘价的平均价

# 用法:变量 = data[股票代码].mavg(天数,‘close’) 

# 获取近二十日股票收盘价的平均价,命名为average_price 

average_price = data[g.security].mavg(20, 'close')

答疑与延伸:

data是什么?data[股票代码]后面除了平均价.mavg还能接什么?

4 判断是否买卖

数据都获取完,该做买卖判断了

# 如果昨日收盘价高出二十日平均价, 则买入,否则卖出 if last_price > average_price: 买入 elif last_price < average_price: 卖出

问题来了,现在该写买卖下单了,但是拿多少钱去买我们还没有告诉计算机,所以每天还要获取账户里现金量。

# 用法:变量 = context.portfolio.cash 

cash = context.portfolio.cash# 取得当前的现金量,命名为cash

答疑与延伸:

context.portfolio 是什么?

这句看着有点复杂,先记住吧。然后我们看看买入卖出怎么写。

5 买入卖出

# 用法:order_value(要买入股票股票的股票代码,要多少钱去买) 

order_value(g.security, cash)# 用当前所有资金买入股票 

# 用法:order_target(要买卖股票的股票代码,目标持仓金额) 

order_target(g.security, 0)# 将股票仓位调整到0,即全卖出

答疑与延伸:

为什么没有指定交易价格?此策略是按天回测进行的且使用的较为简单的市价单下单方法,交易价格为开盘价(加上滑点)

无法交易的情况?涨跌停,停牌,T+1制度等无法交易的情况,系统会自动使下单不成交并在日志中发出警告。

滑点是什么?下单方法有哪些?

6 策略代码写完,进行回测

把买入卖出的代码写好,策略就写完了,如下

def initialize(context):#初始化 

    g.security = '002043.XSHE'# 股票名:兔宝宝 

def handle_data(context, data):#每日循环 

    last_price = data[g.security].close# 取得最近日收盘价 # 取得过去二十天的平均价格                 average_price = data[g.security].mavg(20, 'close') 

    cash = context.portfolio.cash# 取得当前的现金 

 # 如果昨日收盘价高出二十日平均价, 则买入,否则卖出。 

    if last_price > average_price: 

         order_value(g.security, cash)# 用当前所有资金买入股票 

    elif last_price < average_price: 

         order_target(g.security, 0)# 将股票仓位调整到0,即全卖出

现在,在策略回测界面右上部,设置回测时间从20140101到20160601,设置初始资金100000,设置回测频率,然后点击运行回测。

答疑与延伸:

什么是回测?回测是量化交易策略研究中的关键,是指给定一段时间的历史数据(如此处是20140101到20160601的每日数据),计算机按照所编写的策略进行模拟仿真交易,以测试策略效果好坏。

如果你代码没有问题,就会顺利的进行回测,回测结果如下图: 
至此,你就完成了一个简单策略的回测了。

答疑与延伸:

如何根据回测结果评价策略好坏?很初级地讲,有三: 
盈利能力:策略收益与年化收益高,则说明盈利能力强。盈利能力不行说啥都没用。

盈利稳定性:最大回撤要低。最大回撤是指最大亏损幅度,50%则意味着历史上看最大亏损率为50%。

回测可靠性:交易次数要多。交易次数越多意味着经历了越多次的检验,回测的结果也越可靠。

更多说明见:风险指标说明这个策略回撤大,交易次数少,只交易一只股票,并不靠谱。但是结构简单适合新手入门理解整个流程。

7 建立模拟交易,使策略和行情实时连接自动运行

策略写好,回测完成,点击回测结果界面(如上图)右上部红色模拟交易按钮,新建模拟交易如下图。写好交易名称,设置初始资金,数据频率,此处是每天,设置好后点提交。

答疑与延伸:

模拟交易创建成功后,需要等待A股至少开盘一次,才能查看模拟交易结果。

8 开启微信通知,接收交易信号

点击聚宽导航栏我的交易,可以看到创建的模拟交易,如下图。点击右边的微信通知开关,将OFF调到ON,按照指示扫描二维码,绑定微信,就能微信接收交易信号了。
当策略买卖操作,微信会收到信号提醒类似下图。

 

 

Python量化交易入门可以从以下几个方面着手: 1. 学习Python基础知识:包括变量、数据类型、运算符、条件语句、循环语句等。这些是编写量化交易程序的基础。 2. 学习量化交易基础知识:了解量化交易的基本概念、常用的量化交易策略和指标等。可以通过阅读相关书籍或在线教程来学习。 3. 学习数据处理库:Python中有很多用于数据处理的库,如NumPy、Pandas等。这些库可以帮助你处理和分析金融数据。 4. 学习可视化库:Python中有很多用于数据可视化的库,如Matplotlib、Seaborn等。这些库可以帮助你将分析结果以图表的形式展示出来。 5. 学习量化交易库:Python中有一些专门用于量化交易的库,如PyAlgoTrade、Zipline等。这些库提供了一些常用的量化交易功能,如回测、交易执行等。 6. 实践项目:通过实践项目来巩固所学知识。可以选择一些简单的量化交易策略进行回测和优化,或者使用爬虫库获取金融数据进行分析。 以下是一个简单的示例,演示如何使用Python进行简单的量化交易回测: ```python import pandas as pd import numpy as np # 读取股票数据 data = pd.read_csv('stock_data.csv') # 计算收益率 data['returns'] = np.log(data['close'] / data['close'].shift(1)) # 计算移动平均线 data['ma'] = data['close'].rolling(window=10).mean() # 生成交易信号 data['signal'] = np.where(data['close'] > data['ma'], 1, -1) # 计算持仓 data['position'] = data['signal'].shift() # 计算策略收益率 data['strategy_returns'] = data['position'] * data['returns'] # 计算累计收益率 data['cumulative_returns'] = (1 + data['strategy_returns']).cumprod() # 绘制累计收益曲线 data['cumulative_returns'].plot() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值