acwing第一场周赛(二分+图论 +并查集 +找环

给定一个由 n 个整数组成的数组 a,其中 n 为奇数。

你可以对其进行以下操作:

选择数组中的一个元素(例如 ai),将其增加 1(即,将其替换为 ai+1)。
你最多可以进行 k 次操作,并希望该数组的中位数能够尽可能大。

奇数长度的数组的中位数是数组以非降序排序后的中间元素。

例如,数组 [1,5,2,3,5] 的中位数为 3。

输入格式
第一行包含两个整数 n 和 k。

第二行包含 n 个整数 a1,a2,…,an。

输出格式。
输出一个整数,表示通过操作可能得到的最大中位数。

数据范围
对于 30% 的数据,1≤n≤5。
对于 100% 的数据,1≤n≤2×105,1≤k≤109,1≤ai≤109。
在这里插入图片描述

#include <iostream>
#include <cstring>
#include <algorithm>
#define int long long
using namespace std;
int n,k;
int a[1000010];
bool check(int x){
    int res=0;
    for(int i=n/2;i<n;i++){
        if(x>a[i])res+=x-a[i];
    }
    if(res>k)return 0;
    return 1;
}
signed main(){
    cin>>n>>k;
    for(int i=0;i<n;i++)scanf("%lld",a+i);
    sort(a,a+n);
    int l=0,r=2e9;
    while(l<r){
        int mid=(l+r+1)>>1;
        if(check(mid))l=mid;
        else r=mid-1;
    }
    cout<<l<<endl;
}

将 1∼n 按顺序排成一排,构成一个数列。

数字 i 刚好位于位置 i。

再给定一个长度为 n 的位置序列 p1,p2,…,pn,它是 1∼n 的一种排列。

接下来,我们会重复不断地对数列进行如下操作:

重新排列数列中每个数的位置,将位于位置 i 的数移动至位置 pi。(如果 i=pi 则该数仍移动至位置 i)。
每次操作开始时,所有数的移动同时进行,操作结束后,数列将变为一个新的 1∼n 的排列。
例如,当 n=6 并且 p=[4,6,1,3,5,2] 时,第一次操作后,数字 1 将移动至位置 4,数字 2 将移动至位置 6,以此类推;第二次操作后,数字 1 将移动至位置 3,数字 2 将移动至位置 2,以此类推。

你的任务是确定从 1 到 n 的每个数字 i,经过多少次操作后,第一次重新回到位置 i。

例如,考虑 p=[5,1,2,4,3],数字 1 的移动轨迹如下:

第一次操作后,到达位置 5。
第二次操作后,到达位置 3。
第三次操作后,到达位置 2。
第四次操作后,回到位置 1。
所以,经过四次操作后,数字 1 第一次回到位置 1。

值得一提的是,数字 4 经过一次操作后就回到了位置 4.

输入格式
第一行包含整数 T,表示共有 T 组测试数据。

每组数据第一行包含整数 n。

第二行包含 n 个整数 p1,…,pn。

输出格式
每组数据输出一行结果,包含 n 个整数,其中第 i 个整数表示数字 i 第一次回到位置 i 所经过的操作次数。

整数之间用单个空格隔开。

数据范围
对于 30% 的数据,1≤T≤10,1≤n≤10。
对于 100% 的数据,1≤T≤1000,1≤n≤2×105,1≤pi≤n。
保证 p1∼pn 是 1∼n 的一种排列。
保证 ∑n≤2×105(一个输入中的 T 个 n 相加之和不超过 2×105)。

在这里插入图片描述
第一种做法:
并查集求连通块(因为分析题意可知它全是简单环,所以相当于输出每一个点的祖宗的连通块数量)

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n,T,p[200100],s[200010];
int find(int x){
    if(p[x]==x)return x;
    return p[x]=find(p[x]);
}
int main(){
    cin>>T;
    while(T--){
        cin>>n;
        for(int i=1;i<=n;i++)p[i]=i,s[i]=1;
        for(int i=1;i<=n;i++){
            int j;
            cin>>j;
            int a=find(i);
            int b=find(j);
            if(a!=b){
                p[b]=a;
                s[a]+=s[b];
            }
        }
        for(int i=1;i<=n;i++)cout<<s[find(i)]<<" ";
        //输出s【p[i]】是错的,输出s[find(i)]才是ac的,我也不知道为什么也懒得想
        cout<<endl;
        
    }
}

第二种做法,输出环的长度t,然后给每个环上的点记录他们的答案都是t(本质上也相当于连通块大小

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n,T,p[200010];//下标数组
int res[200010];//答案数组
int s[200010],xs;//用s数组来存储每个环的点
int st[200010];//用st数组表示这个点有没有被访问过
int dfs(int x){
    if(st[x])return 0;
    st[x]=1;
    s[++xs]=x;
    
    return dfs(p[x])+1;
}

int main(){
    cin>>T;
    while(T--){
        cin>>n;
        for(int i=1;i<=n;i++)st[i]=0;
        
        for(int i=1;i<=n;i++)cin>>p[i];
        for(int i=1;i<=n;i++){
            if(!st[i]){
                int t=dfs(i);
                for(int k=1;k<=xs;k++)res[ s[k]  ] = t;
                xs=0;
            }
        }
        for(int i=1;i<=n;i++)cout<<res[i]<<" ";
        cout<<endl;
    }
    
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值