给定一个由 n 个整数组成的数组 a,其中 n 为奇数。
你可以对其进行以下操作:
选择数组中的一个元素(例如 ai),将其增加 1(即,将其替换为 ai+1)。
你最多可以进行 k 次操作,并希望该数组的中位数能够尽可能大。
奇数长度的数组的中位数是数组以非降序排序后的中间元素。
例如,数组 [1,5,2,3,5] 的中位数为 3。
输入格式
第一行包含两个整数 n 和 k。
第二行包含 n 个整数 a1,a2,…,an。
输出格式。
输出一个整数,表示通过操作可能得到的最大中位数。
数据范围
对于 30% 的数据,1≤n≤5。
对于 100% 的数据,1≤n≤2×105,1≤k≤109,1≤ai≤109。
#include <iostream>
#include <cstring>
#include <algorithm>
#define int long long
using namespace std;
int n,k;
int a[1000010];
bool check(int x){
int res=0;
for(int i=n/2;i<n;i++){
if(x>a[i])res+=x-a[i];
}
if(res>k)return 0;
return 1;
}
signed main(){
cin>>n>>k;
for(int i=0;i<n;i++)scanf("%lld",a+i);
sort(a,a+n);
int l=0,r=2e9;
while(l<r){
int mid=(l+r+1)>>1;
if(check(mid))l=mid;
else r=mid-1;
}
cout<<l<<endl;
}
将 1∼n 按顺序排成一排,构成一个数列。
数字 i 刚好位于位置 i。
再给定一个长度为 n 的位置序列 p1,p2,…,pn,它是 1∼n 的一种排列。
接下来,我们会重复不断地对数列进行如下操作:
重新排列数列中每个数的位置,将位于位置 i 的数移动至位置 pi。(如果 i=pi 则该数仍移动至位置 i)。
每次操作开始时,所有数的移动同时进行,操作结束后,数列将变为一个新的 1∼n 的排列。
例如,当 n=6 并且 p=[4,6,1,3,5,2] 时,第一次操作后,数字 1 将移动至位置 4,数字 2 将移动至位置 6,以此类推;第二次操作后,数字 1 将移动至位置 3,数字 2 将移动至位置 2,以此类推。
你的任务是确定从 1 到 n 的每个数字 i,经过多少次操作后,第一次重新回到位置 i。
例如,考虑 p=[5,1,2,4,3],数字 1 的移动轨迹如下:
第一次操作后,到达位置 5。
第二次操作后,到达位置 3。
第三次操作后,到达位置 2。
第四次操作后,回到位置 1。
所以,经过四次操作后,数字 1 第一次回到位置 1。
值得一提的是,数字 4 经过一次操作后就回到了位置 4.
输入格式
第一行包含整数 T,表示共有 T 组测试数据。
每组数据第一行包含整数 n。
第二行包含 n 个整数 p1,…,pn。
输出格式
每组数据输出一行结果,包含 n 个整数,其中第 i 个整数表示数字 i 第一次回到位置 i 所经过的操作次数。
整数之间用单个空格隔开。
数据范围
对于 30% 的数据,1≤T≤10,1≤n≤10。
对于 100% 的数据,1≤T≤1000,1≤n≤2×105,1≤pi≤n。
保证 p1∼pn 是 1∼n 的一种排列。
保证 ∑n≤2×105(一个输入中的 T 个 n 相加之和不超过 2×105)。
第一种做法:
并查集求连通块(因为分析题意可知它全是简单环,所以相当于输出每一个点的祖宗的连通块数量)
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n,T,p[200100],s[200010];
int find(int x){
if(p[x]==x)return x;
return p[x]=find(p[x]);
}
int main(){
cin>>T;
while(T--){
cin>>n;
for(int i=1;i<=n;i++)p[i]=i,s[i]=1;
for(int i=1;i<=n;i++){
int j;
cin>>j;
int a=find(i);
int b=find(j);
if(a!=b){
p[b]=a;
s[a]+=s[b];
}
}
for(int i=1;i<=n;i++)cout<<s[find(i)]<<" ";
//输出s【p[i]】是错的,输出s[find(i)]才是ac的,我也不知道为什么也懒得想
cout<<endl;
}
}
第二种做法,输出环的长度t,然后给每个环上的点记录他们的答案都是t(本质上也相当于连通块大小
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
int n,T,p[200010];//下标数组
int res[200010];//答案数组
int s[200010],xs;//用s数组来存储每个环的点
int st[200010];//用st数组表示这个点有没有被访问过
int dfs(int x){
if(st[x])return 0;
st[x]=1;
s[++xs]=x;
return dfs(p[x])+1;
}
int main(){
cin>>T;
while(T--){
cin>>n;
for(int i=1;i<=n;i++)st[i]=0;
for(int i=1;i<=n;i++)cin>>p[i];
for(int i=1;i<=n;i++){
if(!st[i]){
int t=dfs(i);
for(int k=1;k<=xs;k++)res[ s[k] ] = t;
xs=0;
}
}
for(int i=1;i<=n;i++)cout<<res[i]<<" ";
cout<<endl;
}
}