20221022莫名有感

博主反思自己在写博客过程中,从最初的C++、Python、算法与数据结构等栏目,到逐渐懈怠,意识到机械复制资料而非真正学习。他提出,复习和学习不应只是复制,而应侧重于总结、归纳和创新,如C++实现的排序算法、内核链表等。他决定改变策略,追求更有价值的学习和分享。
摘要由CSDN通过智能技术生成

人真的是时常要自省!!!

9月份某一天,准备发奋图强,争取每天发一篇博客。

最初的想法是分为4个专栏,C++,python,算法与数据结构,项目以及扫盲区。现在看来,又增加了一个杂谈。就当作一个人宣泄的个人空间吧。

本来准备部署一个个人的博客,但是想想又太过孤独,且和我计划的方向差的太远,还不如就采用CSDN这种,大家一起在里面,也算一个热闹,至少知道周围都是和我一样书写博客的人。

这里扯回原来的话题,为什么要说自省呢?

主要有两点,一是自己初衷背道而驰,二是效率也变得低下起来了。

以算法与数据结构这个栏目为例,本来准备把基础的数据结构,例如数组,链表,堆栈,队列的知识都做一个总结,而我只是一味的参考一个已经讲述很详细的资料了。

在前期数组,以及链表的时候,我觉得还算认真,提出了比较有新意的想法。

比如用C++实现了10种数组的排序算法,以及测试代码都提供了。

在链表的时候,也提出了内核链表以及企业链表,这些都是原来资料上没有提及的,算是一个总结。

而到了堆栈,这个时候,我也开始使用泛型编程来进行堆栈的实现,同时实现了一个很经典的单调栈案例,逆波兰算法。

而现在,正准备更新队列,这个时候,我发现了两个问题,懈怠和效率。

懈怠是因为没有了书写的激情,这些基础的数据结构,参考别人的资料都写的很详细了,自己也大概掌握,但是却要再次学习和书写,可能有人会说这是所谓的复习。

但是我想说这不是所谓的复习,这是大脑放空之后,机械的复制粘贴。根本就没有复习的意义。

其次就是效率,我觉得体现我总结归纳的地方不应该机械重复的复制,而是归纳与总结,以及新的知识的学习。

比如在使用C++实现10种排序算法,实现内核链表和企业链表,使用泛型编程实现堆栈,实现逆波兰算法的时候,我都是非常用心且乐在其中的。

所以我想,为什么我还要去做机械重复的工作呢,我更应该做的是总结和归纳,以及创新,这才是真正的复习和学习!并且我还要给下一天的自己留悬念,生活麻,不就是自己折腾吗。

发了些许牢骚,也算是一个人的自言自语了。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值