【大模型之Graph RAG系列之二】对比传统RAG技术中使用的向量搜索技术,知识图谱有哪些优缺点?

向量搜索和知识图谱是两项用于改善搜索体验的重要技术。结合这两种技术形成的Graph RAG可以进一步提高搜索的准确性和上下文相关性。本文将深入对比向量搜索和知识图谱,让读者快速了解这两种技术的原理及优缺点,以便于将来的技术决策。

向量搜索

向量搜索是一种用于在数据集中找到相似项目的技术。它通过以下方式工作:

  • 将每个项目转换成向量(数学特征表示)
  • 使用距离度量计算向量间的相似度
  • 即使查询不完全匹配,也能找到相似项目

在这里插入图片描述

知识图谱

知识图谱是一种特殊的数据结构,具有以下特点:

  • 将信息表示为节点和关系的网络
  • 节点表示实体
  • 关系表示实体之间的联系
    在这里插入图片描述

向量搜索和知识图谱的对比

特性向量搜索知识图谱搜索
数据结构高维向量空间节点和边的图结构
数据类型文本、图像、音频等嵌入向量实体(如人、地点、事件)及其关系
搜索方法基于相似度的最近邻搜索基于逻辑推理和路径遍历
性能适合大规模数据,速度较快随着图规模增大,查询速度可能下降
可扩展性对大规模向量库较友好需要结构化和复杂性管理,扩展性较差
语义理解依赖于向量距离,缺乏显性语义语义表达清晰,能更好地进行复杂推理
模糊查询更适合模糊查询,能处理语义相似但不精确的查询精确性高,但模糊性较低
维护数据更新较为简单,只需更新向量需要更新节点和边关系,维护复杂
适用场景文本匹配、推荐系统知识管理、问答系统
优点适合大规模非结构化数据、查询速度快语义清晰、适合复杂推理、具备逻辑性
缺点缺乏明确语义表达、复杂推理能力弱对数据规模敏感、扩展性差、维护难度大

结语

Graph RAG 的优势:Graph RAG通过知识图谱增强了传统RAG的语义理解和推理能力,特别适合需要逻辑和上下文关联的场景。

参考文章

  • https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/
  • https://www.elastic.co/what-is/vector-search
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

surfirst

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值