自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Breeze

keep up,一直在进步就好呀!

原创 Java的内存划分

Java的内存需要划分为五个部分: 1. 栈(Stack): 存放的都是方法中的局部变量,方法的运行一定在栈中; 方法的参数,或者是方法{}内部的变量; 2. 堆(Heap): 凡是new 出来的东西都在堆中; 堆内存里存放的东西都有一个地址值:16进制 堆内存中的数据都有默认值,规则: 如果...

2019-11-05 22:07:42

阅读数 54

评论数 0

原创 Python位运算符

Python位运算符 按位运算符是把数字看作二进制来进行计算的。Python中的按位运算法则如下: 变量 a 为 60,b 为 13,二进制格式如下: a = 0011 1100; b = 0000 1101; 运算符 描述 实例 & 按位与运算符:参与运算的两个值,如...

2019-11-02 20:28:42

阅读数 84

评论数 0

原创 语义分割最新指南2019版

之前出现的深度学习语义分割指南2017版(A 2017 Guide to Semantic Segmentation with Deep Learning ),作者总结了当年各个具有代表性的语义分割算法与相关贡献。今年Namespace Africa 数据科学家Derrick Mwiti 对该领域...

2019-10-10 02:42:08

阅读数 524

评论数 0

原创 HMM、MEMM、CRF模型的比较

一,HMM HMM模型中2个假设: 输出观测值XiX_iXi​之间相互独立; 齐次一阶Markov,即状态的转移过程中当前状态只与前一状态有关。 二、MEMM MEMM模型打破了观察值之间相互独立产生的问题,但是由于状态之间的假设理论,使得该模型存在 标注偏置问题(labe...

2019-10-09 02:31:16

阅读数 26

评论数 0

原创 VMware中Ubuntu系统网络无法连接

VMware中Ubuntu系统网络无法连接 一般在VMware虚拟机设置中安装的ubuntu系统采用两种链接网络的模式: 桥接模式,ubuntu单独想有一个物理ip,也就是说外部主机和Ubuntu分别拥有自己的IP; NAT模式,Ubuntu系统与外部宿主机共享ip,只要外部宿主机可以上网...

2019-09-24 06:34:27

阅读数 30

评论数 0

原创 关于机器学习特征选择的方法总结

机器学习特征选择的方法总结 1.特征选择的重要性 随着深度学习的发展, 大大缩减了特征提取和设计的任务。 不过, 特征工程依然是各种机器学习应用领域的重要组成部分。其中对于特征选择(排序)的研究对于数据科学家、机器学习从业者来说非常重要。好的特征选择能够提升模型的性能,更能帮助我们理解数据的特...

2019-09-12 15:28:33

阅读数 239

评论数 0

翻译 目标检测 3—— 人脸检测

笔记来源:DeepLearning-500-questions 上次学习了目标检测的基本概念 Two Stage和 One Stage 算法: 1.目标检测Two Stage 2.目标检测One Stage 4 人脸检测 在目标检测领域可以划分为了人脸检测与通用目标检测,往往人脸这方面会有专门的算...

2019-08-12 13:54:05

阅读数 243

评论数 0

翻译 目标检测 2—— One Stage目标检测算法

笔记来源:DeepLearning-500-questions 上次学习了目标检测的基本概念和一些经典的Two Stage算法:1.目标检测Two Stage 3. One Stage目标检测算法 我们将对单次目标检测器(包括SSD系列和YOLO系列等算法)进行综述。我们将分析FPN以理解多尺度特...

2019-08-12 12:39:42

阅读数 222

评论数 0

翻译 目标检测 1——基本概念和Two Stage网络模型

笔记来源:DeepLearning-500-questions 1.基本概念 1.1 什么是目标检测? ​ 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时...

2019-08-09 17:28:46

阅读数 66

评论数 0

原创 调用百度Ai飞桨平台人流量估计API【亲测可用】

最近搞了下高密度人群数量估计,参考了很多资料,首先是想自己动手搭建一个CSRnet进行训练,这个网络的代码实现可以参照 论文和代码如下,有兴趣的可以动手自己做: CVPR 2018 Paper : https://arxiv.org/abs/1802.10062 Keras实现:https://...

2019-08-06 18:09:49

阅读数 333

评论数 0

原创 批归一化(Batch Normalization)详细解释笔记

批归一化(Batch Normalization)的详细解释 ​ 以前在神经网络训练中,只是对输入层数据进行归一化处理,却没有在中间层进行归一化处理。要知道,虽然我们对输入数据进行了归一化处理,但是输入数据经过矩阵乘法以及非线性运算之后,其数据分布很可能被改变,而随着深度网络的多层运算之后,数据...

2019-07-31 11:14:40

阅读数 205

评论数 0

原创 CNN中parameters和FLOPs计算

CNN中parameters和FLOPs计算 以AlexNet为例,先注意观察每层编注的通道数的变化。 1. 卷积网络的参数量的计算(parameters) CNN中的parameters分为两种:W和b,注意这里W是大写,表示一个矩阵,也因此它相比 b,既含有更多的信息,同时也是paramete...

2019-07-30 11:37:21

阅读数 74

评论数 0

原创 机器学习代价函数,损失函数理解

机器学习常见的代价函数 (1)二次代价函数(quadratic cost): J=12n∑x∥y(x)−aL(x)∥2 J = \frac{1}{2n}\sum_x\Vert y(x)-a^L(x)\Vert^2 J=2n1​x∑​∥y(x)−aL(x)∥2 ​ 其中,JJJ表示代价函数...

2019-07-29 12:00:22

阅读数 37

评论数 0

原创 Anaconda + pycharm+jupyter notebook虚拟环境的创建和使用

Anaconda + pycharm+jupyter notebook虚拟环境的创建和使用 以tensorflow2.0为例: Anaconda支持交互界面设置,添加虚拟环境和更新库都很方便,但是有的时候新的版本库发布后要过一段时间才能集成进来,所以我们有必要学习如何在终端中使用命令行设置。 1...

2019-07-19 17:32:52

阅读数 96

评论数 0

原创 NLP_BERT模型的介绍

1.BERT模型的介绍 BERT模型(Bidirectional Encoder Representations from Transformers)——基于Transformer的双向编码表示法: BERT模型的根基就是Transformer,来源于attention is all yo...

2019-07-19 11:51:34

阅读数 127

评论数 0

原创 Python和Numpy中——浅拷贝和深拷贝的详解

Python—浅拷贝和深拷贝的详解 首先我们要了解一下浅拷贝和深拷贝的概念: 1.浅拷贝 定义:浅拷贝是对另外一个变量的内存地址的拷贝,这两个变量指向同一个内存地址的变量值。 注:仅仅拷贝的是目标变量的所在地址,目标变量的所在地址不发生任何变化。 实际上,变量中并没有存储任何的值,它只是指向了一...

2019-07-18 15:28:00

阅读数 12

评论数 0

原创 用户画像整体流程

用户画像将产品设计的焦点放在目标用户的动机和行为上,从而避免产品设计人员草率地代表用户。产品设计人员经常不自觉的把自己当作用户代表,根据自己的需求设计产品,导致无法抓住实际用户的需求。往往对产品做了很多功能的升级,用户却觉得体验变差了。 在大数据领域,用户画像的作用远不止于此。用户的行为数据无法直...

2019-07-03 11:17:45

阅读数 127

评论数 0

翻译 吴恩达机器学习笔记1

第1周 1、引言(Introduction) 1.1 欢迎 参考视频: 1 - 1 - Welcome (7 min).mkv 第一个视频主要讲了什么是机器学习,机器学习能做些什么事情。 机器学习是目前信息技术中最激动人心的方向之一。在这门课中,你将学习到这门技术的前沿,并可以自己实现学习机器学习...

2019-07-02 18:50:03

阅读数 71

评论数 0

原创 Vi/Vim使用笔记

终端中的编辑器—-Vi/Vim使用笔记 目标 vi 简介 打开和新建文件 三种工作模式 常用命令 分屏命令 常用命令速查图 01. vi 简介 1.1 学习 vi 的目的 在工作中,要对 服务器 上的文件进行 简单 的修改,可以使用 ssh 远程登录到服务器上,并且使用 vi 进行快速的编辑...

2019-07-02 18:39:40

阅读数 19

评论数 0

转载 Sublime Text 3前端开发常用优秀插件介绍

[转载博客地址] (https://www.cnblogs.com/hykun/p/sublimeText3.html) Sublime Text 3前端开发常用优秀插件介绍 前言:关于Sublime Text 3. Package Control插...

2019-05-25 05:42:23

阅读数 326

评论数 0

转载 Linux学习笔记5—Linux常用命令之用户、权限管理

Linux学习笔记5—Linux常用命令之用户、权限管理 引言 用户是Unix/Linux系统工作中重要的一环,用户管理包括用户与组账号的管理。 在Unix/Linux系统中,不论是由本机或是远程登录系统,每个系统都必须拥有一个账号,并且对于不同的系统资源拥有不同的使用权...

2019-05-12 02:18:17

阅读数 16

评论数 0

原创 Linux学习笔记day.1 Linux系统的文件和目录

Linux系统的发展历史是很有趣的过程,多种条件导致这个系统的出现和发展壮大, 一 Linux系统的文件和目录的概念 1、ubuntu没有盘符这个概念,只有一个根目录/,所有文件都在它下面。 2、Linux 目录 /:根目录,一般根目录下只存放目录,在Linux下有且只有一个根目录。所...

2019-05-07 22:48:11

阅读数 6

评论数 0

原创 Linux笔记6_vim编辑器常用命令总结

打开vi后默认进入到一种状态 …_____>命令模式,此时所有的东西都不可编辑。 所有的命令都是在这个模式下切换过去的。 <1> 从命令行模式到插入模式,此时才可以对进行编辑。   i :在光标前插入   a :在光标后插入   I :在光标所处在的行的行首   A :...

2019-05-07 22:36:50

阅读数 25

评论数 0

原创 Qt Creator基本使用方法学习

Qt的学习资料参照这篇良心文档,感谢奇先生的工作:https://qtguide.ustclug.org/ 在 Qt Creator 诞生之前, Qt 程序可以通过 qmake 命令行编译或者像上一节手动输入 g++ 命令编译,在 Linux 平台还有 KDevelop 这类 KDE 桌面程序开...

2019-04-14 04:52:15

阅读数 4191

评论数 0

转载 静态库、动态库,dll文件、lib文件,隐式链接、显式链接理解

原博地址: 静态链接、动态链接 静态库和动态库分别应用在静态链接方式和动态链接方式中,所谓静态链接方式是指在程序执行之前完成所有的链接工作,把静态库一起打包合入,生成一个可执行的目标文件(EXE文件)。所谓动态链接方式是指可执行目标文件在执行过程中才去加载调用相关功能函数,即在需要时才按需调...

2019-04-13 07:10:18

阅读数 27

评论数 0

转载 C++中*.h和*.cpp文件的编译

转自博客:(https://blog.csdn.net/u012617944/article/details/78405686) 一、C++编译模式 通常,在一个C++程序中,只包含两类文件——.cpp文件和.h文件。其中,.cpp文件被称作C++源文件,里面放的都是C++的源代码;而.h文件则被...

2019-04-10 16:59:31

阅读数 779

评论数 0

原创 计算机视觉之OpenCV-Python学习指南/Day1

1.OpenCV简介 OpenCV于1999年由Gary Bradsky在英特尔创立,CV是计算机视觉Computer Vision的缩写,第一个版本于2000年问世.Vadim Pisarevsky加入了Gary Bradsky,负责管理英特尔的俄罗斯软件OpenCV团队。2005年,OpenC...

2019-03-25 05:02:12

阅读数 123

评论数 0

原创 Python中的部分函数及功能使用

Python包含许多有用的内置函数和方法来完成常见任务。 1.字符串函数 1.join - 使用另一个字符串作为分隔符连接字符串列表。 2.replace - 将字符串中的一个子字符串替换为另一个子字符串。 3.startswith和endswith - 分别确定字符串的开头和结尾是否有子字符串...

2019-03-17 04:51:05

阅读数 37

评论数 0

原创 2.Python中列表学习

Python List中切片的使用学习 列表切片如果使用正确会带来简洁高效地程序实现,对于列表的增’删‘改’查的功能和只要分别掌握以下几点: 1.append(在末尾添加);".insert(在指定位置插入元素)"; 2.删除元素del list[index] (删除一个元素...

2019-03-16 23:16:47

阅读数 20

评论数 0

原创 有趣的神经网络学习教程

推荐一个有趣的神经网络学习教程 最初在Youtube上看到了3Blue1Brown关于数学学习方法的教程,偶然间发现他们制作的4集关于神经网络的前向和反向传播的视频演示教程,被他们全面而有趣的讲解而吸引了。感觉这么有创意又很有帮助的方法应该可以帮助很多人,至少是像我这样的喜欢通过图像学习的孩子。...

2019-03-15 17:52:00

阅读数 49

评论数 0

原创 Python中类的创建和使用方法

面向对象编程(OOP)是最有效的软件编写方法之一,我们会使用到类(CLASS)来定义出一大类对象都有的行为,当我们基于类来创建对象时,每个对象都具备这种通用的行为。 然后根据需要赋予每个对象独特的个性。根据类来创建对象被称为实例化,你将把自己编写的类存储在模块中,并在自己的程序文件中导入其他程序...

2019-03-13 06:56:31

阅读数 366

评论数 0

原创 关于Git 和Github的学习

Git 和Github的使用 现在git与github在各种操作系统中都有友好的交互式界面,很多编译器也支持git版本控制:Pycharm,Visual Studio等,但是命令行操作对开发者而言可能更加有效,仍然需要熟练地掌握。首先需要明白: Git是一个分布式版本控制系统,一种软件, Gi...

2019-03-12 05:48:00

阅读数 34

评论数 0

原创 Python 中 for 与 while 语句的使用比较

Python 中for与while 语句的使用比较 我们常会使用到for或者while进行遍历操作,另外很多人会认为这两个循环是完全等效的,但是在一些情况下会出现不一样的情况。在Python3.x中用一段代码比较两者的区别,代码如下: 1. 使用while循环语句: orders=[...

2019-03-11 21:31:36

阅读数 139

评论数 0

原创 卷积神经网络反向传播算法

CNNCNNCNN卷积神经网络的反向传播算法学习 在常规神经网络的基础上,CNN的正向传播原理比较容易理解,而反向传播算法的学习比较难以掌握,根据网上的一些教学,以批量梯度下降法为例来描述反向传播算法。对算法的主要公式和解释整理如下:        输入:m个图片样本.      CNN模...

2019-03-10 05:19:52

阅读数 164

评论数 0

原创 Python中while循环下break和continue的区别

while循环中break和continue的对比 while循环中经常使用break和continue语句,但是很多人不明白具体的含义,实际上我们在一段while循环中同时使用这两个语句,便能够很直接的感受到两者的不同之处。 先来看这段Python代码: i = 0 while True: ...

2019-03-08 06:24:20

阅读数 79

评论数 0

提示
确定要删除当前文章?
取消 删除