K-L变换, 是一种常用的正交变换,用于数据压缩与降维.
正交变换是什么意思?
以下面的波形为例:
这个波形是由一个低频(红线)和一个高频(绿线)波形组合而成:
我们希望通过变换将这两种波形分解出来;
正交变换指的是,当我们希望分析出某种频率的成分,通过正交变换,分析出的成分中不会混杂有其它频率的成分.
如何实现正交变换?
假设有一组正交基:
uTiuj=1,i=j
uTiuj=0,i≠j
对任意信号 x 有
则实现了正交变换,将
x
转换为
K-L展开?
对于 D 维训练样本集(原始特征空间),通过正交变换,将特征空间降到
d(d<D) 维的过程,K-L展开对信号的损失最小,即为最佳的正交变换.
设信号
x
为D 维,那么通过正交变换,我们希望只找到其中最重要的
为了保证信号损失最小即
x^=argminuiE∥x−x^∥2
经过具体计算
从而需要解决优化问题
x^=argminuiξ
s.t.
uTiuj=1,i=j
uTiuj=0,i≠j
记 A=E(xxT) , 则正交基 ui 满足
Aui=λiui
也就是说 ui 是 A 的特征向量, 所以我们取前d个最大的特征值对应的特征向量进行展开即可.
这个过程与主成分分析-PCA很相似.
K-L展开的性质?
变换后的特征不相关
E(ci,cj)=E[uTixxTuj]=λiδij
任意 x 都可以进行正交变换吗?
是的,对任意内积空间中的
x 都可以进行正交变换.
关于内积空间参考再生核希尔伯特空间1—希尔伯特空间