K-L展开 (Karhunen-Loeve expansion)

10 篇文章 0 订阅
9 篇文章 0 订阅

K-L变换, 是一种常用的正交变换,用于数据压缩与降维.


正交变换是什么意思?

以下面的波形为例:
sin

这个波形是由一个低频(红线)和一个高频(绿线)波形组合而成:
sin2

我们希望通过变换将这两种波形分解出来;
正交变换指的是,当我们希望分析出某种频率的成分,通过正交变换,分析出的成分中不会混杂有其它频率的成分.


如何实现正交变换?

假设有一组正交基:

uTiuj=1,i=j
uTiuj=0,ij

对任意信号 x
x=i=1ciui

则实现了正交变换,将 x 转换为c1,c2......


K-L展开?

对于 D 维训练样本集(原始特征空间),通过正交变换,将特征空间降到d(d<D) 维的过程,K-L展开对信号的损失最小,即为最佳的正交变换.

设信号 x 为D 维,那么通过正交变换,我们希望只找到其中最重要的d c , 而把其它的丢掉

x^=i=1dciui

为了保证信号损失最小即

x^=argminuiExx^2

经过具体计算
shi

从而需要解决优化问题

x^=argminuiξ

s.t.
uTiuj=1,i=j
uTiuj=0,ij

A=E(xxT) , 则正交基 ui 满足
Aui=λiui

也就是说 ui A 的特征向量, 所以我们取前d个最大的特征值对应的特征向量进行展开即可.

这个过程与主成分分析-PCA很相似.


K-L展开的性质?

变换后的特征不相关

E(ci,cj)=E[uTixxTuj]=λiδij


任意 x 都可以进行正交变换吗?

是的,对任意内积空间中的x都可以进行正交变换.
关于内积空间参考再生核希尔伯特空间1—希尔伯特空间

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值