Partial differential equations and the finite element method 3-FEA1.md

10 篇文章 0 订阅
9 篇文章 0 订阅

This part is devoted to introduce the Galerkin method and its important special case, the Finite element method.

Consider the general framework

Let V V be a Hilbert space, a(.,.):V×VR a bilinear form and lV l ∈ V ′ . It is our task to find uV u ∈ V such that
(1)

a(u,v)=l(v) a ( u , v ) = l ( v )

We assume that the bilinear form a(.,.) a ( . , . ) is bounded and V-elliptic, i.e., that there exist constants Cb,Cel>0 C b , C e l > 0 such that

|a(u,v)|CbuVvV | a ( u , v ) | ≤ C b ∥ u ∥ V ∥ v ∥ V

and
a(u,v)Celv2V a ( u , v ) ≥ C e l ∥ v ∥ V 2

Recall that the weak problem (1) has a unique solution by the Lax-Milgram lemma.


The Galerkin method

As V V is infinite dim function space. The Galerkin method is based on a sequence of finite dimensional subspaces {Vn}n=1V, VnVn+1 V n ⊂ V n + 1 , that fill the space V V in the limit. In each finite-dimensional space Vn, problem (1) is solved exactly. It can be shown that under suitable assumptions the sequence of the approximate solutions {un}n=1 { u n } n = 1 ∞ converges to the exact solution of problem (1).

Discrete problem

Find unVn u n ∈ V n such that
(2)

a(un,v)=l(v),vVn a ( u n , v ) = l ( v ) , v ∈ V n

Lemma 1 (Unique solvability) Problem (2) has a unique solution unVn u n ∈ V n ,.

Proof: Recall Lax-Milgram lemma : Let V V be a Hilbert space, a(.,.):V×VR a bounded V-elliptic bilinear form and lV l ∈ V ′ Then there exists a unique solution to the problem

a(u,v)=l(v) a ( u , v ) = l ( v )
.

Suppose space V V has a finite basis {vn}n=1Nn, then

un=j=1Nnyjvj u n = ∑ j = 1 N n y j v j

where yj y j s are unknown coefficients.
a(un,vi)=j=1Nnyja(vj,vi)=l(vI) a ( u n , v i ) = ∑ j = 1 N n y j a ( v j , v i ) = l ( v I )

Denote Sn={a(vj,vi)}Ni,j=1 S n = { a ( v j , v i ) } i , j = 1 N , Fn={l(vi)} F n = { l ( v i ) } , Yn={yj} Y n = { y j } , then
(3)
SnYn=Fn S n Y n = F n
.

Lemma 2 (Positive definiteness of Sn S n ) Let Vn V n be a Hilbert space and a(.,.):V×VR a ( . , . ) : V × V → R a bilinear V-elliptic form. Then the stiffness matrix Sn S n , of the discrete problem (3) is positive definite.

About the error uun u − u n

Lemma 3 (Orthogonality of error for elliptic problems) Let uV u ∈ V be the exact solution of the continuous problem (I ) and un u n the exact solution of the discrete problem (3).
Then the error en=uun e n = u − u n , satisjies

a(uun,v)=0,vVn a ( u − u n , v ) = 0 , ∀ v ∈ V n
.
Proof:Because VnV V n ⊂ V , then
a(uun,v)=a(u,v)a(un,v)=0. a ( u − u n , v ) = a ( u , v ) − a ( u n , v ) = 0.

Remark 1 (Geometrical interpretation) If the bilinear form a(.,.) a ( . , . ) is symmetric, it induces an energetic inner product, then

(en,v)e=0,vVn ( e n , v ) e = 0 , ∀ v ∈ V n
,

i.e., that the error of the Galerkin approximation en=uun e n = u − u n is orthogonal to the Galerkin subspace Vn V n in the energetic inner product. Hence the approximate solution u, E V, is an orthogonal projection of the exact solution u u onto the Galerkin subspace Vn in the energetic inner product, and thus it is the nearest element in the space Vn V n to the exact solution u u in the energy norm,

uune=infvVnuve

convergence


FEA

Let ΩRd Ω ⊂ R d , where d d is the spatial dimension, be an open bounded set. If the Hilbert space V consists of functions defined in Ω Ω and the Galerkin subspaces Vn V n comprise piecewise-polynomial functions, the Galerkin method is called the Finite element method (FEM).

Consider the model equation

(a1u)+a0u=f, − ∇ ( a 1 ∇ u ) + a 0 u = f ,

where fL2(Ω) f ∈ L 2 ( Ω ) , in a bounded interval Ω=(a,b)R Ω = ( a , b ) ⊂ R , equipped with the homogeneous Dirichlet boundary conditions. At the beginning let a1 a 1 and a0 a 0 be constants and assume a simple load function of the form f(x)=1 f ( x ) = 1 .

The Galerkin procedure assumes a sequence of finite-dimensional subspaces

V1V2V V 1 ⊂ V 2 ⊂ … ⊂ V

Consider a partition

a=x(n)0<x(n)1<<x(n)Mn=b a = x 0 ( n ) < x 1 ( n ) < … < x M n ( n ) = b

and define the finite element mesh
\mathcal {T}_n=\{K_1^{(n),K_2^{(n),\ldots,K_{M_n}^{(n)\} \mathcal {T}_n=\{K_1^{(n),K_2^{(n),\ldots,K_{M_n}^{(n)\}

The open intervals

K_i^{(n)=(x_{i-1}^{(n)},x_i^{(n)}) K_i^{(n)=(x_{i-1}^{(n)},x_i^{(n)})
are called finite elements, and the value
h(n)=max(x(n)ix(n)i1) h ( n ) = m a x ( x i ( n ) − x i − 1 ( n ) )

is said to be the mesh diameter.

The piecewise linear basis functions vj v j , satisfy vj(xi)=δij v j ( x i ) = δ i j .

Then by (3), we can get un u n .

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 偏微分方程是数学中的一个重要概念,是描述自然科学和工程学中的许多问题的基础。偏微分方程解决了许多复杂的问题,如材料科学、量子力学、天气模拟和流体力学等。在数学上,解决偏微分方程的方法主要包括解析方法、数值方法和数学物理方法。 解析方法是通过数学公式来计算偏微分方程的解,涉及到函数、导数和积分等基础数学知识。解析方法的优点是精确、清晰,但是对于很多现实问题来说,解析方法的实现十分复杂,有时解析解甚至无法找到。 数值方法是通过计算机算法来近似求解偏微分方程,主要包括有限差分法、有限元法和谱方法等。数值方法的优点是可以处理更加复杂的问题,并且求解过程具有普适性,但是在求解过程中需要考虑误差和收敛性等问题。 数学物理方法是一种相对较新的解决偏微分方程的方法,将偏微分方程与物理学相结合,从物理本质来解释问题。其中较为流行的为变分方法与对称性分析。这种方法解决的问题通常涉及到高维曲面、代数方程和微分方程等。 总之,解决偏微分方程的方法因问题而异,只有在具体问题中了解各种方法的特点和适用条件,并根据实际情况选择,才能取得令人满意的结果。 ### 回答2: 偏微分方程求解(partial differential equations solutions)是数学中的一个重要研究领域。简单来说,偏微分方程是一个关于多个变量的方程,该方程描述了这些变量在空间和时间上的变化,是许多科学领域的重要理论基础, 如物理学、化学、工程学、生物学等等。 偏微分方程的求解是一个复杂的过程,需要依靠数学分析、计算方法和计算机技术等多种工具。在实际应用中,必须根据具体问题选取合适的数值方法和求解算法。常见的数值方法包括有限差分法、有限元法、谱方法等等。其中有限差分法是应用最广泛的数值方法之一。有限差分法可以将连续的偏微分方程转化为离散的代数方程,使得方程的求解变得可行。另外,计算机技术在偏微分方程求解中也扮演了重要的角色。大量的计算和存储数据需要依靠高速计算机。 总之,偏微分方程求解是一个挑战性很大的领域,涉及到多个科学学科和技术领域,有着广阔的应用前景。 ### 回答3: 偏微分方程解是数学中的一个重要概念,用于描述复杂系统中的各种现象,例如流体力学,量子力学和电磁学等领域。偏微分方程是一种包含未知函数及其偏导数的方程,通常会涉及到多个自变量和因变量,因此解决其解析解通常是很困难的。 尽管如此,还是有很多方法用于求解偏微分方程解。其中的一种常见方法是使用分离变量法,这种方法将未知函数分解成多个变量的乘积,并将偏微分方程转化为一系列普通微分方程。这样就可以通过求解这些普通微分方程来得到原方程的解。 另一种求解偏微分方程的常见方法是使用数值方法,这些方法将偏微分方程进行离散化处理,将其转化为代数方程组,利用计算机进行求解。这种方法通常适用于复杂的偏微分方程,例如非线性方程等等。 总之,偏微分方程解是微分方程学中的一个基础概念,解决复杂系统中的数学问题,具有广泛的应用价值。虽然求解偏微分方程解可能比较困难,但是有很多方法可以用于解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值