在复现Gzip+KNN实现文本分类的论文,代码里面使用了Pool函数完成并行化计算。之前接触的比较少,结合chatGPT看懂了hh,记录一下
原代码
with Pool(5) as p:
pred_correct_pair = p.map(partial(knn_exp_ins.combine_dis_acc_single, k, train_data, train_label), test_data, test_label)
-
with Pool(5) as p
创建了一个Pool对象,并指定了最大进程数为5。
with语句可以确保在使用完Pool后,自动释放相关资源。 -
pred_correct_pair = p.map(...)
在Pool对象上调用map方法。map方法的作用是将函数应用于一个可迭代的数据集合,并返回结果。
在这里,函数是partial(knn_exp_ins.combine_dis_acc_single, k, train_data, train_label),数据集合是test_data, test_label。 -
partial(knn_exp_ins.combine_dis_acc_single, k, train_data, train_label)
偏函数(partial function),通过partial函数可以固定某些函数参数,从而得到一个新的函数。
在这里,knn_exp_ins.combine_dis_acc_single函数的前三个参数已经被固定为k, train_data, train_label
。
p.map
实际上在并行运行的时候会调用knn_exp_ins.combine_dis_acc_single
函数,其实际调用形式将类似于knn_exp_ins.combine_dis_acc_single(k, train_data, train_label, test_data[0], test_label[0])
其中
test_data[0]
和test_label[0]
分别是test_data和test_label中的第一个元素,相当于对测试数据中的每个数据进行预测。 -
pred_correct_pair
:一个包含多个元组的列表,每个元组包含预测结果和正确标签,类似于[(pred1, correct1), (pred2, correct2), …],其中pred1, pred2, …是对应测试数据的预测值,correct1, correct2, …是对应测试数据的正确标签。
总结:pred_correct_pair:这将是一个包含多个元组的列表,每个元组包含预测结果和正确标签,类似于[(pred1, correct1), (pred2, correct2), …],其中pred1, pred2, …是对应测试数据的预测值,correct1, correct2, …是对应测试数据的正确标签。