Python:使用Pool实现并行化计算

文章介绍了在复现Gzip+KNN文本分类论文时,如何利用Pool函数进行并行化计算。通过withPool创建进程池,对test_data和test_label应用partial函数固定的knn_exp_ins.combine_dis_acc_single函数,生成包含预测结果和正确标签的元组列表。
摘要由CSDN通过智能技术生成

在复现Gzip+KNN实现文本分类的论文,代码里面使用了Pool函数完成并行化计算。之前接触的比较少,结合chatGPT看懂了hh,记录一下
原代码

with Pool(5) as p:
	pred_correct_pair = p.map(partial(knn_exp_ins.combine_dis_acc_single, k, train_data, train_label), test_data, test_label)

  1. with Pool(5) as p
    创建了一个Pool对象,并指定了最大进程数为5。
    with语句可以确保在使用完Pool后,自动释放相关资源。

  2. pred_correct_pair = p.map(...)
    在Pool对象上调用map方法。map方法的作用是将函数应用于一个可迭代的数据集合,并返回结果。
    在这里,函数是partial(knn_exp_ins.combine_dis_acc_single, k, train_data, train_label),数据集合是test_data, test_label。

  3. partial(knn_exp_ins.combine_dis_acc_single, k, train_data, train_label)
    偏函数(partial function),通过partial函数可以固定某些函数参数,从而得到一个新的函数。
    在这里,knn_exp_ins.combine_dis_acc_single函数的前三个参数已经被固定为k, train_data, train_label
    p.map实际上在并行运行的时候会调用knn_exp_ins.combine_dis_acc_single函数,其实际调用形式将类似于knn_exp_ins.combine_dis_acc_single(k, train_data, train_label, test_data[0], test_label[0])

    其中test_data[0]test_label[0]分别是test_data和test_label中的第一个元素,相当于对测试数据中的每个数据进行预测。

  4. pred_correct_pair:一个包含多个元组的列表,每个元组包含预测结果和正确标签,类似于[(pred1, correct1), (pred2, correct2), …],其中pred1, pred2, …是对应测试数据的预测值,correct1, correct2, …是对应测试数据的正确标签。

总结:pred_correct_pair:这将是一个包含多个元组的列表,每个元组包含预测结果和正确标签,类似于[(pred1, correct1), (pred2, correct2), …],其中pred1, pred2, …是对应测试数据的预测值,correct1, correct2, …是对应测试数据的正确标签。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值