分治
分治这种思想可以用递归或者非递归解决,分治的子问题个数为1称为减治,子问题个数大于1称为分治,n的阶乘的求解是减治,fibo数列的求解是分治。
递归
两个重要的概念:递归边界和递归式
⭐⭐⭐输出全排列
#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 11;
//n表示输出1-n的全排列
int n, P[maxn], hashTable[maxn] = { 0 };
void generateP(int index) {
if (index == n + 1) {
for (int i = 1; i <= n; i++)
{
printf("%d",P[i]);
}
printf("\n");
return;
}
for (int x = 1; x <= n; x++)
{
if (hashTable[x] == 0)
{
P[index] = x;
hashTable[x] = 1;
generateP(index + 1);
hashTable[x] = 0;
}
}
}
int main()
{
n = 3;
generateP(1);
return 0;
}
n皇后问题
该问题如果使用组合数的方式表示每一种情况,就像从n²中选n,需要C(n n²)的枚举量
现在改进它,在全排列的代码基础上求解
⭐暴力
这里有一个全局变量count,该变量使用时会报错-”不明确的变量“
解决方法:把using namespace std注释掉就好了。
或者不使用count计数,使用num计数。
#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<cstring>
#include<algorithm>
//using namespace std;
const int maxn = 11;
int n, P[maxn], hashTable[maxn] = { 0 };
int count = 0;
void generateP(int index) {
if (index == n + 1)//递归边界,生成了一个排列
{
int flag = 1;
for (int i = 1; i <= n; i++)//遍历任意两个皇后
{
for (int j = i + 1; j <=n; j++)
{
if (abs(i - j) == abs(P[i] - P[j]))//如果在一条对角线上
{
flag = 0;
}
}
}
if (flag)
count = count + 1;;
return;
}
for (int x = 1; x <= n; x++)
{
if (hashTable[x] == 0)
{
P[index] = x;
hashTable[x] = 1;
generateP(index + 1);
hashTable[x] = 0;
}
}
}
int main()
{
n = 8;
generateP(1);
printf("%d",count);
return 0;
}
⭐⭐回溯
#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<cstring>
#include<algorithm>
//using namespace std;
const int maxn = 11;
int n, P[maxn], hashTable[maxn] = { 0 };
int num = 0;
void generateP(int index) {
if (index == n + 1)//递归边界,生成了一个排列
{
num++;
return;
}
for (int x = 1; x <= n; x++)
{
if (hashTable[x] == 0)//第x行还没有皇后
{
int flag = 1;//=1表示当前皇后还不会和之前的皇后冲突
for (int pre = 1; pre < index; pre++)
{
if (abs(index - pre) == abs(x - P[pre]))//拿第x行和之前的1-index行进行比较
{
flag = 0;
break;
}
}
if (flag)//第x行和之前没有冲突
{
P[index] = x;
hashTable[x] = 1;
generateP(index + 1);
hashTable[x] = 0;
}
}
}
}
int main()
{
n = 8;
generateP(1);
printf("%d", num);
return 0;
}
问题 A: 吃糖果
问题描述:名名的妈妈从外地出差回来,带了一盒好吃又精美的巧克力给名名(盒内共有 N 块巧克力,20 > N >0)。
妈妈告诉名名每天可以吃一块或者两块巧克力。
假设名名每天都吃巧克力,问名名共有多少种不同的吃完巧克力的方案。
例如:
如果N=1,则名名第1天就吃掉它,共有1种方案;
如果N=2,则名名可以第1天吃1块,第2天吃1块,也可以第1天吃2块,共有2种方案;
如果N=3,则名名第1天可以吃1块,剩2块,也可以第1天吃2块剩1块,所以名名共有2+1=3种方案;
如果N=4,则名名可以第1天吃1块,剩3块,也可以第1天吃2块,剩2块,共有3+2=5种方案。
现在给定N,请你写程序求出名名吃巧克力的方案数目。
- 输入
输入只有1行,即整数N。
- 输出
可能有多组测试数据,对于每组数据,
输出只有1行,即名名吃巧克力的方案数。
- 样例输入
1
2
4
- 样例输出
1
2
5
#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<cstring>
#include<algorithm>
//using namespace std;
int num;
int count(int num)
{
if (num == 0)
{
return 1;
}
else if (num == 1)
{
return count(num - 1);
}
else
return count(num - 1) + count(num - 2);
}
int main()
{
while (scanf("%d", &num) != EOF)
{
printf("%d\n", count(num));
}
}
问题 B: 数列
问题描述:编写一个求斐波那契数列的递归函数,输入n 值,使用该递归函数,输出如下图形(参见样例)。
- 输入
输入第一行为样例数m,接下来有m行每行一个整数n,n不超过10。
- 输出
对应每个样例输出要求的图形(参见样例格式)。
- 样例输入
1
6
- 样例输出
0
0 1 1
0 1 1 2 3
0 1 1 2 3 5 8
0 1 1 2 3 5 8 13 21
0 1 1 2 3 5 8 13 21 34 55
这题一开始想复杂了,以为还要再求fibo的递归里面输出数列的元素,后来发现递归只用在了求fibo的第n项元素上,就是每次输出都要求一次比较费时间,可以设置一个数组先把1-30的fibo元素求出来,到时候直接输出就可以了
#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<cstring>
#include<algorithm>
//using namespace std;
//求出fibo数列第n项
int fibo(int n) {
if ((n == 0) || (n == 1))
{
return n;
}
else
{
return fibo(n - 1) + fibo(n - 2);
}
}
int main()
{
int m;
int i;
int n;//输出的图形有n行,最后一行的fibo数列一共有2n-1个元素
int j;
int k;
int temp;
scanf("%d",&m);
for (i = 1; i <= m; i++)
{
scanf("%d",&n);//一共要输出几行
temp = 0;
for (k = 1; k <= n; k++)//输出从第1行到第n行
{
for (j = 0; j < n - k; j++)
printf(" ");
for (j = 0; j < 2 * k - 1; j++)
printf("%d ",fibo(j));
printf("\n");
}
}
}
⭐⭐⭐问题 C: 神奇的口袋
问题描述:有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40。John现在有n个想要得到的物品,每个物品的体积分别是a1,a2……an。John可以从这些物品中选择一些,如果选出的物体的总体积是40,那么利用这个神奇的口袋,John就可以得到这些物品。现在的问题是,John有多少种不同的选择物品的方式。
- 输入
输入的第一行是正整数n (1 <= n <= 20),表示不同的物品的数目。接下来的n行,每行有一个1到40之间的正整数,分别给出a1,a2……an的值。
- 输出
输出不同的选择物品的方式的数目。
- 样例输入
2
12
28
3
21
10
5
- 样例输出
1
0
好经典的题目,但我没想出来www!
#include <cstdio>
int count,n,a[20];
void search(int index,int sum)
{
if(sum==0)
{
count++;
return ;
}
if(index>=n)
return ;
if(sum-a[index]>=0)
search(index+1,sum-a[index]);
search(index+1,sum);
}
int main()
{
while(~scanf("%d",&n))
{
count=0;
for(int i=0;i<n;i++)
scanf("%d",&a[i]);
search(0,40);
printf("%d\n",count);
}
return 0;
}
⭐⭐问题 D: 八皇后
问题描述:会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2…b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。
- 输入
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)
- 输出
输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。
- 样例输入
3
6
4
25
- 样例输出
25713864
17582463
36824175
经典的八皇后问题,在递归条件判断完成后再加判断,回溯和暴力都可以解决
#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<cstring>
#include<algorithm>
//using namespace std;
const int maxn = 11;
int n, P[maxn], hashTable[maxn] = { 0 };
int num = 0;
void generateP(int index,int nuum) {
if (index == n + 1)//递归边界,生成了一个排列
{
num++;
if (num == nuum) {
for(int i=1;i<=n;i++)
printf("%d",P[i]);
}
return;
}
for (int x = 1; x <= n; x++)
{
if (hashTable[x] == 0)//第x行还没有皇后
{
int flag = 1;//=1表示当前皇后还不会和之前的皇后冲突
for (int pre = 1; pre < index; pre++)
{
if (abs(index - pre) == abs(x - P[pre]))//拿第x行和之前的1-index行进行比较
{
flag = 0;
break;
}
}
if (flag)//第x行和之前没有冲突
{
P[index] = x;
hashTable[x] = 1;
generateP(index + 1,nuum);
hashTable[x] = 0;
}
}
}
}
int main()
{
n = 8;
int nn;
scanf("%d",&nn);
int i;
int nuum;
for (i = 1; i <= nn; i++)
{
scanf("%d",&nuum);
num = 0;
generateP(1,nuum);
if(i!=nn)
printf("\n");
//printf("%d", num);
}
return 0;
}