《算法笔记》4.3小节——算法初步->递归

分治
分治这种思想可以用递归或者非递归解决,分治的子问题个数为1称为减治,子问题个数大于1称为分治,n的阶乘的求解是减治,fibo数列的求解是分治。

递归
两个重要的概念:递归边界和递归式

⭐⭐⭐输出全排列

#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 11;
//n表示输出1-n的全排列
int n, P[maxn], hashTable[maxn] = { 0 };
void generateP(int index) {
	if (index == n + 1) {
		for (int i = 1; i <= n; i++)
		{
			printf("%d",P[i]);
		}
		printf("\n");
		return;
	}
	for (int x = 1; x <= n; x++)
	{
		if (hashTable[x] == 0)
		{
			P[index] = x;
			hashTable[x] = 1;
			generateP(index + 1);
			hashTable[x] = 0;
		}
	}
}
int main()
{
	n = 3;
	generateP(1);
	return 0;
}

n皇后问题
该问题如果使用组合数的方式表示每一种情况,就像从n²中选n,需要C(n n²)的枚举量
现在改进它,在全排列的代码基础上求解
⭐暴力
这里有一个全局变量count,该变量使用时会报错-”不明确的变量“
解决方法:把using namespace std注释掉就好了。
或者不使用count计数,使用num计数。

#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<cstring>
#include<algorithm>
//using namespace std;
const int maxn = 11;
int n, P[maxn], hashTable[maxn] = { 0 };
int count = 0;
void generateP(int index) {
	if (index == n + 1)//递归边界,生成了一个排列
	{
		int flag = 1;
		for (int i = 1; i <= n; i++)//遍历任意两个皇后
		{
			for (int j = i + 1; j <=n; j++)
			{
				if (abs(i - j) == abs(P[i] - P[j]))//如果在一条对角线上
				{
					flag = 0;
				}
			}
			
		}
		if (flag)
			count = count + 1;;
		return;
	}
	for (int x = 1; x <= n; x++)
	{
		if (hashTable[x] == 0)
		{
			P[index] = x;
			hashTable[x] = 1;
			generateP(index + 1);
			hashTable[x] = 0;
		}
	}
}
int main()
{
	n = 8;
	generateP(1);
	printf("%d",count);
	return 0;
}

⭐⭐回溯

#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<cstring>
#include<algorithm>
//using namespace std;
const int maxn = 11;
int n, P[maxn], hashTable[maxn] = { 0 };
int num = 0;
void generateP(int index) {
	if (index == n + 1)//递归边界,生成了一个排列
	{
		num++;
		return;
	}
	for (int x = 1; x <= n; x++)
	{
		if (hashTable[x] == 0)//第x行还没有皇后
		{
			int flag = 1;//=1表示当前皇后还不会和之前的皇后冲突
			for (int pre = 1; pre < index; pre++)
			{
				if (abs(index - pre) == abs(x - P[pre]))//拿第x行和之前的1-index行进行比较
				{
					flag = 0;
					break;
				}
			}
			if (flag)//第x行和之前没有冲突
			{
				P[index] = x;
				hashTable[x] = 1;
				generateP(index + 1);
				hashTable[x] = 0;
			}
		}
	}
}
int main()
{
	n = 8;
	generateP(1);
	printf("%d", num);
	return 0;
}

问题 A: 吃糖果
问题描述:名名的妈妈从外地出差回来,带了一盒好吃又精美的巧克力给名名(盒内共有 N 块巧克力,20 > N >0)。
妈妈告诉名名每天可以吃一块或者两块巧克力。
假设名名每天都吃巧克力,问名名共有多少种不同的吃完巧克力的方案。
例如:
如果N=1,则名名第1天就吃掉它,共有1种方案;
如果N=2,则名名可以第1天吃1块,第2天吃1块,也可以第1天吃2块,共有2种方案;
如果N=3,则名名第1天可以吃1块,剩2块,也可以第1天吃2块剩1块,所以名名共有2+1=3种方案;
如果N=4,则名名可以第1天吃1块,剩3块,也可以第1天吃2块,剩2块,共有3+2=5种方案。
现在给定N,请你写程序求出名名吃巧克力的方案数目。

  • 输入
输入只有1行,即整数N。
  • 输出
可能有多组测试数据,对于每组数据,
输出只有1行,即名名吃巧克力的方案数。
  • 样例输入
1
2
4
  • 样例输出
1
2
5
#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<cstring>
#include<algorithm>
//using namespace std;
int num;
int count(int num)
{
	if (num == 0)
	{
		return 1;
	}
	else if (num == 1)
	{		
		return count(num - 1);
	}
	else
		return count(num - 1) + count(num - 2);
		
			
}
int main()
{
	while (scanf("%d", &num) != EOF)
	{		
		printf("%d\n", count(num));
	}
	
}

问题 B: 数列
问题描述:编写一个求斐波那契数列的递归函数,输入n 值,使用该递归函数,输出如下图形(参见样例)。

  • 输入
输入第一行为样例数m,接下来有m行每行一个整数n,n不超过10
  • 输出
对应每个样例输出要求的图形(参见样例格式)
  • 样例输入
1
6
  • 样例输出
         0
       0 1 1
     0 1 1 2 3
   0 1 1 2 3 5 8
 0 1 1 2 3 5 8 13 21
0 1 1 2 3 5 8 13 21 34 55

这题一开始想复杂了,以为还要再求fibo的递归里面输出数列的元素,后来发现递归只用在了求fibo的第n项元素上,就是每次输出都要求一次比较费时间,可以设置一个数组先把1-30的fibo元素求出来,到时候直接输出就可以了

#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<cstring>
#include<algorithm>
//using namespace std;
//求出fibo数列第n项
int fibo(int n) {
	if ((n == 0) || (n == 1))
	{		
		return n;
	}		
	else
	{		
		return fibo(n - 1) + fibo(n - 2);
	}		
}
int main()
{
	int m;
	int i;
	int n;//输出的图形有n行,最后一行的fibo数列一共有2n-1个元素
	int j;
	int k;
	int temp;
	scanf("%d",&m);
	for (i = 1; i <= m; i++)
	{
		scanf("%d",&n);//一共要输出几行
		temp = 0;
		for (k = 1; k <= n; k++)//输出从第1行到第n行
		{
			for (j = 0; j < n - k; j++)
				printf("  ");
			for (j = 0; j < 2 * k - 1; j++)
				printf("%d ",fibo(j));
			printf("\n");
		}
	}	
}

⭐⭐⭐问题 C: 神奇的口袋
问题描述:有一个神奇的口袋,总的容积是40,用这个口袋可以变出一些物品,这些物品的总体积必须是40。John现在有n个想要得到的物品,每个物品的体积分别是a1,a2……an。John可以从这些物品中选择一些,如果选出的物体的总体积是40,那么利用这个神奇的口袋,John就可以得到这些物品。现在的问题是,John有多少种不同的选择物品的方式。

  • 输入
输入的第一行是正整数n (1 <= n <= 20),表示不同的物品的数目。接下来的n行,每行有一个140之间的正整数,分别给出a1,a2……an的值。
  • 输出
输出不同的选择物品的方式的数目。
  • 样例输入
2
12
28
3
21
10
5
  • 样例输出
1
0

好经典的题目,但我没想出来www!

#include <cstdio>
int count,n,a[20];
void search(int index,int sum)
{
	if(sum==0)
	{
		count++;
		return ;
	}
	if(index>=n)
		return ;
	if(sum-a[index]>=0)
		search(index+1,sum-a[index]);
	search(index+1,sum);
}
int main()
{
	while(~scanf("%d",&n))
	{
		count=0;
		for(int i=0;i<n;i++)
			scanf("%d",&a[i]);
		search(0,40);
		printf("%d\n",count); 
	}
	return 0;
}

⭐⭐问题 D: 八皇后
问题描述:会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2…b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。

  • 输入
1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)
  • 输出
输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。
  • 样例输入
3
6
4
25
  • 样例输出
25713864
17582463
36824175

经典的八皇后问题,在递归条件判断完成后再加判断,回溯和暴力都可以解决

#define _CRT_SECURE_NO_WARNINGS 1
#include<cstdio>
#include<cstring>
#include<algorithm>
//using namespace std;
const int maxn = 11;
int n, P[maxn], hashTable[maxn] = { 0 };
int num = 0;
void generateP(int index,int nuum) {
	if (index == n + 1)//递归边界,生成了一个排列
	{
		num++;
		if (num == nuum) { 
			for(int i=1;i<=n;i++)
				printf("%d",P[i]);
			
		}
	
		return;
	}
	for (int x = 1; x <= n; x++)
	{
		if (hashTable[x] == 0)//第x行还没有皇后
		{
			int flag = 1;//=1表示当前皇后还不会和之前的皇后冲突
			for (int pre = 1; pre < index; pre++)
			{
				if (abs(index - pre) == abs(x - P[pre]))//拿第x行和之前的1-index行进行比较
				{
					flag = 0;
					break;
				}
			}
			if (flag)//第x行和之前没有冲突
			{
				P[index] = x;
				hashTable[x] = 1;
				generateP(index + 1,nuum);
				hashTable[x] = 0;
			}
		}
	}
}
int main()
{
	n = 8;
	int nn;
	scanf("%d",&nn);
	int i;
	int nuum;
	for (i = 1; i <= nn; i++)
	{
		scanf("%d",&nuum);
		num = 0;
		generateP(1,nuum);
		if(i!=nn)
			printf("\n");
		//printf("%d", num);
	}
	
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值