题目描述
会下国际象棋的人都很清楚:皇后可以在横、竖、斜线上不限步数地吃掉其他棋子。如何将8个皇后放在棋盘上(有8 * 8个方格),使它们谁也不能被吃掉!这就是著名的八皇后问题。
对于某个满足要求的8皇后的摆放方法,定义一个皇后串a与之对应,即a=b1b2…b8,其中bi为相应摆法中第i行皇后所处的列数。已经知道8皇后问题一共有92组解(即92个不同的皇后串)。
给出一个数b,要求输出第b个串。串的比较是这样的:皇后串x置于皇后串y之前,当且仅当将x视为整数时比y小。
输入
第1行是测试数据的组数n,后面跟着n行输入。每组测试数据占1行,包括一个正整数b(1 <= b <= 92)
输出
输出有n行,每行输出对应一个输入。输出应是一个正整数,是对应于b的皇后串。
样例输入 Copy
3
6
4
25
样例输出 Copy
25713864
17582463
36824175
题解
#include<cstdio>
#include<algorithm>
using namespace std;
const int n = 8;
//所有数组均从下标1开始存
int p[n + 1] = { 0 };//暂存序列
int cmp[93] = { 0 };//用于存放序列(整数形式)
bool hashTable[n + 1] = { false };
int Count = 0;
void generateP(int index) {//index表示行
if (index == n + 1) {//递归边界,已经处理完了1到n行
Count++;
for (int i = 1; i < index; i++) {//将序列转化为整数存到cmp数组
cmp[Count] += p[i];
if (i < index - 1) cmp[Count] *= 10;
}
return;
}
for (int i = 1; i <= n; i++) {//枚举1-n列,试图占用第i列
if (hashTable[i] == false) {//如果第i列没有皇后
bool flag = true;
//回溯法,true表示当前皇后不和之前的皇后冲突(对角线)
for (int pre = 1; pre < index; pre++) {
if (abs(index - pre) == abs(i - p[pre])) {
flag = false;
break;
}
}
if (flag) {//和之前的没有冲突(对角线)
p[index] = i;//第index行占用第i列
hashTable[i] = true;//第i列已经占用
generateP(index + 1);//递归处理第index+1行
hashTable[i] = false;//递归处理完后哈希数组复原
}
}
}
}
int main() {
generateP(1);
sort(cmp + 1, cmp + 93);
int m,q;
scanf("%d", &m);
while (m--) {
scanf("%d", &q);
printf("%d\n", cmp[q]);
}
}