二分模板
- 二分的使用条件: 有序,顺序存储
- 时间复杂度 : log(n)
二分查找
利用二分的思想我们可以再log(n)的时间复杂度内在n个数中找出我们想要的数
- 模板1:数据结构书中的模板,
//二分 ,若存在返回下标,不存在返回-1
int bins(int key)
{
int l = 1, r = n;
while(l<=r)
{
int mid = (l+r)/2;
if(A[mid] == key)return mid;
else if(A[mid] > key) r = mid -1;
else l = mid +1;
}
return -1;
}
二分答案
二分法同样适用于去搜索答案,由于二分的性质,要求答案必须具备单调性
模板2和3的使用:(引用yxc大佬)
首先通过题目背景和check(mid)函数的逻辑,判断答案落在左半区间还是右半区间。
左右半区间的划分方式一共有两种:中点mid属于左半区间,则左半区间是[l, mid],右半区间是[mid+1, r],更新方式是r = mid;或者 l = mid + 1;,此时用第一个模板;
中点mid属于右半区间,则左半区间是[l, mid-1],右半区间是[mid, r],更新方式是r = mid - 1;或者 l = mid;,此时用第二个模板;
- 模板2:
//每次分为两个子状态【l , mid】 【mid+1 , r】,最终一定会以l == r 结束
int bins_1(int l, int r)
{
while (l < r)
{
int mid = (l + r) >> 1;
if (check(mid)) r = mid;
else l = mid + 1;
}
return l;
}
- 模板3
//每次分为两个子状态【l , mid-1】 【mid , r】,最终一定会以l == r 结束
// 注意 mid = (l + r + 1) >>1;
int bins_2(int l, int r)
{
while(l < r)
{
int mid = (l + r + 1) >>1;
if(check(mid)) l = mid;
else r = mid -1;
}
return l;
}
- 带精度的二分
for(int i = 0; i < 100; ++i)
{// 2的100次方 精度非常高!
double mid = (l+r)/2;
if(check(mid)) r = mid; else l = mid;
}
也可以:
//eps 要比所需精度高两位
double eps = 1e-5
while(r-l < eps)
{
double mid = (l+r)/2;
if(check(mid)) r = mid; else l = mid;
}