LG P1736 创意吃鱼法

终于找到一点dp的门路了(但还是差的远),这个是为数不多的我自己写出来状态转移方程的一个dp题

题目描述

回到家中的猫猫把三桶鱼全部转移到了她那长方形大池子中,然后开始思考:到底要以何种方法吃鱼呢(猫猫就是这么可爱,吃鱼也要想好吃法 ^_*)。她发现,把大池子视为01矩阵(0表示对应位置无鱼,1表示对应位置有鱼)有助于决定吃鱼策略。

在代表池子的01矩阵中,有很多的正方形子矩阵,如果某个正方形子矩阵的某条对角线上都有鱼,且此正方形子矩阵的其他地方无鱼,猫猫就可以从这个正方形子矩阵“对角线的一端”下口,只一吸,就能把对角线上的那一队鲜鱼吸入口中。

猫猫是个贪婪的家伙,所以她想一口吃掉尽量多的鱼。请你帮猫猫计算一下,她一口下去,最多可以吃掉多少条鱼?

输入输出格式

输入格式:

有多组输入数据,每组数据:

第一行有两个整数n和m(n,m≥1),描述池塘规模。接下来的n行,每行有m个数字(非“0”即“1”)。每两个数字之间用空格隔开。

对于30%的数据,有n,m≤100

对于60%的数据,有n,m≤1000

对于100%的数据,有n,m≤2500

输出格式:

只有一个整数——猫猫一口下去可以吃掉的鱼的数量,占一行,行末有回车。

输入输出样例

输入样例#1: 复制
4 6
0 1 0 1 0 0
0 0 1 0 1 0
1 1 0 0 0 1
0 1 1 0 1 0
输出样例#1: 复制
3

说明

右上角的

1 0 0 0 1 0 0 0 1


首先是对角线有两条这个显然的问题。。。
这么显然的问题我一开始居然都没想到。。。真的没治。。。
然后不难得出,当一个点左上/右上存在一条鱼且构成子矩形时,这个点可以构成的符合题目要求的最大子矩形的边长(即对角线上鱼的个数)为左上/右上的点可以构成的最大子矩形的边长+1
状态转移方程得出来了,这个题目的最大的问题就解决了
然后就是一些次要的问题
虽然是次要的,但是并不代表可以忽略,依然很重要
譬如这一点
在构成最大子矩形时,我们并不一定要使用左上/右上的点构成的最大子矩形
比如下面这一组数据(摘自讨论版)

6 6
1 1 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 1
1 0 0 0 0 0

WA#4的代码应该是输出了4,但正确答案是5

这个情况,在判断第5行第2个点向右上的延伸时,有问题的应该是直接判断到这个点不能扩展到5,于是dp值就设为了1.

然而实际上,这个点可以做到4,并且为点(6,1)提供路径达到最大值5.

真的感谢@Mr_Spade

下面就上代码了

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#define For(i,l,r) for(int i=l;i<=r;++i)
using namespace std;
bool mapp[2501][2501];
int n,m,dp[2501][2501],dp2[2501][2501],ans=0;//ans=0是防止全为0的图
bool judge(int x,int y,int l,bool t)
{
    int tx=x-1,ty=y,tl=l;
    while(tl)
    {
        if(mapp[tx][ty])
         return 0;
        tx--;
        tl--;
    }
    tx=x;tl=l;
    if(!t)
     ty=y-1;
    else
     ty=y+1;
    while(tl)
    {
        if(mapp[tx][ty])
         return 0;
        tl--;
        if(!t)
         ty--;
        else
         ty++;
    }
    return 1;
}
int main()
{
    scanf("%d %d",&n,&m);
    char c;
    For(i,1,n)
     For(j,1,m)
     {
        while((c=getchar())==' '||c=='\n'||c=='\r');
        c-='0';
        if(c)
        {
            mapp[i][j]=1;
            dp[i][j]=1;
            dp2[i][j]=1;
            ans=1;//这一句一定要有,不然最大子矩形边长为1时就输出0了。。。因为我的状态转移只有可以转移时才会更新ans值
        }
     }
    int temp;
    For(i,2,n)
     For(j,2,m)
     {
        if(mapp[i][j])
        {
            if(mapp[i-1][j-1])
            {
                temp=dp[i-1][j-1]+1;
                while(temp>1)
                {
                    if(judge(i,j,temp-1,0))
                    {
                        dp[i][j]=temp;
                        ans=max(ans,dp[i][j]);
                        break;
                    }
                    --temp;
                }
            }
            if(mapp[i-1][j+1])
            {
                temp=dp2[i-1][j+1]+1;
                while(temp>1)
                {
                    if(judge(i,j,temp-1,1))
                    {
                        dp2[i][j]=temp;
                        ans=max(ans,dp2[i][j]);
                        break;
                    }
                    --temp;
                }
            }
        }
     }
    cout<<ans<<'\n';
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/suxuyu01/article/details/79951516
上一篇LG P2850 [USACO06DEC]虫洞Wormholes
下一篇LG P1417 烹调方案
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭