在处理大规模文本数据时,我们常常会遇到重复或相似的文本记录。这些重复或相似的记录不仅会占用存储空间,还可能影响数据分析的准确性和效率。本文将介绍如何使用Python及其相关库(如pandas
、scikit-learn
)对文本数据进行处理,统计标题的重复频数,并基于文本相似度合并相似标题。
一、背景介绍
在实际的数据处理场景中,文本数据的重复或相似性是一个常见的问题。例如,在新闻数据中,可能有多个来源报道了相同或相似的事件,但标题略有不同;在用户生成的内容中,也可能出现大量相似的评论或反馈。因此,我们需要一种方法来识别这些重复或相似的文本,并进行有效的合并和统计。
本文将通过以下步骤实现这一目标:
-
统计标题的重复频数。(注意:本代码传入的文件一定要有“标题”列,可自行修改)
-
基于文本相似度合并相似标题。
-
输出处理后的结果。
本人在对大量资讯标题分析时发现, 有很多不同的媒体可能发布了相同或相似的标题,但在后期统计时,如果仅仅计算重复频数通常都会有很大的错漏,且多数为相差几个字、符号不同或者空格区别,本代码对于这种现象的处理能力较好,可以有效的聚类出有细微区别的标题并统计。如果是句子结构不同但意思相似、或者字数差异较大的可能不会有很好的效果。利用的算法是基于余弦相似度