目录
极限的由来
平均速率
瞬时速率
转为极限
本章先介绍微积分里面一个重要的概念 ——极限
极限的由来
牛顿先生和一位哲学家、数学家的德国人:戈特弗里德 莱布尼茨,他和牛顿活在同一时代,两位科学家共同创立了微积分学。
微积分学主要是在研究一个问题:某物的瞬时变化率。(当前时刻确切的变化率)
用牛顿的微分学术语来说就是"曲率法",这个词听起来比微分还特别,但它其实就是瞬时变量的表示。
平均速率
这里为了更深入的理解这个概念,我们使用博尔特(全世界短跑冠军)
他能9.58秒跑了100米,我们画个图:
利用图的信息,我们就能求出他全程的平均速度:
平均速度就等于路程增量比上对应的时间增量,用这里的变量表示:
路程增量就是,时间增量就是。
这个公式表示了图上两点之间的斜率。如果我将这两点用直线连接起来。就是它的斜率。
代数课中你应该听过的"垂直高度比上水平跨度"就等于100米比上9.58秒,所以表达式为:
而斜率就是变化率。或者说两点之间的平均变化率。
经过计算100/9.58结果大约等于10.4m/s(米/每秒),但这表示的是平均速率。
待会你将看到平均速率和任意时刻的速率(瞬时速率)有什么不同。
瞬时速率
现在我来计算一下,我们求一下他一个小时能跑多少米,就是乘以3600秒,得出37578.2881002米。他能跑那么远。
前提是他全程保持那个速度。这也是用米每小时为单位时的速率。和汽车比不算快,但比普通人太快了。
为了弄明白它怎么不同于瞬时速度。我们需要思考一下这个路程的时间函数的可能图像。
首先他不可能立即加速到这个速度,所以不会全程保持同一个速度。
他会有一段加速期,所以一开始,他起跑速度会稍慢一些。对应的斜率也就稍小一点。如图:
如图所示他的路程时间函数就是像那条粉红色的曲线,而平均速率计算的只是固定速度。
而那条曲线,我们可以看到任意点的斜率实际上都不一样。
刚开始路程的变化稍慢一些,到了中间开始加速,这点的切线的斜率似乎要比平均斜率大,再接下来他的速度开始慢了下来。
博尔特最高瞬时速度实际上超过我们刚才从上面公式算出来的答案。
要求每一点的斜率也不复杂,你只要求这一点的近似斜率就行了,而求这点的近似斜率的方法是:
在这点附近取个y增量然后比上对应的x增量。相反,也一样。这样就能得到经过那个点的斜率了。但只能得到近似的结果。
因为曲线每一点的斜率是不断变化的。
于是我们要做的就是看当取得越来越小时会得到什么?我们就能得到越好的近似值。对应的也会变得越来越小。
转为极限
然后我们还想更深入地更严格地研究它,我们就取它在趋近0时的极限,也就是求 在趋近于0时的极限。
这样得到的结果就趋于瞬时变化率了。也就是看成是曲线上那一点的瞬时斜率,或者曲线上那一点的切线的斜率。
又或者用微分学的术语就是导函数。所以瞬时斜率就是导函数。
而我们的导函数的记号是:
这就是为什么我说要保留字母y了(应该是"d")。也就是字母d和单词"差","微分"的关系。
是个差值,也是个差值。一般化的概念就是,分子是无限小的y增量,它比上无限小的x增量。
利用这种取无限小增量的方式,我们就能得到一点的瞬时斜率。
或者说这个例子里就是博尔特在这一时刻的瞬时速度,但注意,分母不能等于0的。
因为如果我们令x增量为0得到的式子是没有定义的,0不能作为分母,所以只是取它趋近于0时的极限。
——请不断重复练习、练习、练习、再练习。。。