三角学——极坐标_1

这篇博客介绍了二维平面上的坐标表示,从笛卡尔坐标系到极坐标的转换。通过勾股定理和三角函数,解释了如何通过直角三角形的边长计算出极坐标(r, θ),并提供了转换公式。文章强调了理解和练习这些概念的重要性。" 83960921,5730540,深入解析Lodash:数据类型判断的秘密,"['lodash', 'js', '源码']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先我要知道什么是笛卡尔坐标?如图:

我们平常使用这个二维平面,就是笛卡尔坐标。

如果我们要确定二维平面上的任意一点,只需要给出 x 轴方向上的距离和 y 轴方向上的距离,就可以确定这个点。

现在我们给出这个点:

在笛卡尔坐标系中,为达到这个点,我们需要右移3个单位长度,坐标为3:

上移动4个单位长度,到达蓝色这一点:

按照惯例,这就是横坐标,纵坐标,称这个点为(3,4):

这是定位二维平面点的其中一种方法。

第二种方法就是,直接向那个点出发:

如何给出这个方向呢?为什么称之为0°?

可以称这个角度为0°,设这个角度为\theta,给它指出一个方向,说它了 r 个单位长度,它会到达

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值