矩阵的运算及其运算规则



  满足矩阵方程,求未知矩阵
   由已知条件知
     
     

三、矩阵与矩阵的乘法


  1、 运算规则 
  设,则A与B的乘积是这样一个矩阵:
  (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即
  (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

  典型例题 
  例6.5.2 设矩阵
  计算 
   的矩阵.设它为
        

        
  想一想:设列矩阵,行矩阵的行数和列数分别是多少呢 
  是3×3的矩阵,是1×1的矩阵,即只有一个元素.

  课堂练习 
  1、设,求
  2、在第1道练习题中,两个矩阵相乘的顺序是A在左边,B在右边,称为A左乘B或B右乘A.如果交换顺序,让B在左边,A在右边,即A右乘B,运算还能进行吗?请算算试试看.并由此思考:两个矩阵应当满足什么条件,才能够做乘法运算.
  3、设列矩阵,行矩阵,求,比较两个计算结果,能得出什么结论吗?
  4、设三阶方阵,三阶单位阵为,试求,并将计算结果与A比较,看有什么样的结论.

  解: 
  第1题
  第2题
  对于
  求是有意义的,而是无意义的.

  结论1 只有在下列情况下,两个矩阵的乘法才有意义,或说乘法运算是可行的:左矩阵的列数=右矩阵的行数.
  第3题
  矩阵,的矩阵.
           
              
    结论2 在矩阵的乘法中,必须注意相乘的顺序.即使在均有意义时,也未必有=成立.可见矩阵乘法不满足交换律.
  第4题
  计算得:
  结论3 方阵A和它同阶的单位阵作乘积,结果仍为A,即
  单位阵在矩阵乘法中的作用相当于数1在我们普通乘法中的作用.

  典型例题 
  例6.5.3 设,试计算
    
       
      
     
       
       
    结论4 两个非零矩阵的乘积可以是零矩阵.由此若,不能得出的结论.

  例6.5.4 利用矩阵的乘法,三元线性方程组
  可以写成矩阵的形式
 
  若记系数、未知量和常数项构成的三个矩阵分别为
 
  则线性方程组又可以简写为矩阵方程的形式:

  2、 运算性质(假设运算都是可行的) 
  (1) 结合律 
  (2) 分配律 (左分配律);
         (右分配律).
  (3) 
   3、 方阵的幂 
 
定义:设A是方阵,是一个正整数,规定
显然,记号表示个A的连乘积.

四、矩阵的转置


  1、 定义
 
定义:将矩阵A的行换成同序号的列所得到的新矩阵称为矩阵A的转置矩阵,记作
  例如,矩阵的转置矩阵为
  2、运算性质(假设运算都是可行的)
  (1)  
  (2)  
  (3)  
  (4) 是常数.

  典型例题 
  例6.5.5  利用矩阵
  验证运算性质: 
      
  而
     
  所以
   

 
定义:如果方阵满足,即,则称A为对称矩阵
  对称矩阵的特点是:它的元素以主对角线为对称轴对应相等.

五、方阵的行列式


  1、定义
 
定义:由方阵A的元素所构成的行列式(各元素的位置不变),称为方阵A的行列式,记作

  2 、运算性质 
  (1)  (行列式的性质)
  (2) ,特别地: 
  (3) 是常数,A的阶数为n)
  思考:设A为阶方阵,那么的行列式与A的行列式之间的关系为什么不是,而是

  不妨自行设计一个二阶方阵,计算一下
  例如,则
  于是,而 
  思考:,有几种方法可以求
    方法一:先求矩阵乘法,得到一个二阶方阵,再求其行列式.
    方法二:先分别求行列式,再取它们的乘积.
  满足矩阵方程,求未知矩阵
   由已知条件知
     
     

三、矩阵与矩阵的乘法


  1、 运算规则 
  设,则A与B的乘积是这样一个矩阵:
  (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即
  (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

  典型例题 
  例6.5.2 设矩阵
  计算 
   的矩阵.设它为
        

        
  想一想:设列矩阵,行矩阵的行数和列数分别是多少呢 
  是3×3的矩阵,是1×1的矩阵,即只有一个元素.

  课堂练习 
  1、设,求
  2、在第1道练习题中,两个矩阵相乘的顺序是A在左边,B在右边,称为A左乘B或B右乘A.如果交换顺序,让B在左边,A在右边,即A右乘B,运算还能进行吗?请算算试试看.并由此思考:两个矩阵应当满足什么条件,才能够做乘法运算.
  3、设列矩阵,行矩阵,求,比较两个计算结果,能得出什么结论吗?
  4、设三阶方阵,三阶单位阵为,试求,并将计算结果与A比较,看有什么样的结论.

  解: 
  第1题
  第2题
  对于
  求是有意义的,而是无意义的.

  结论1 只有在下列情况下,两个矩阵的乘法才有意义,或说乘法运算是可行的:左矩阵的列数=右矩阵的行数.
  第3题
  矩阵,的矩阵.
           
              
    结论2 在矩阵的乘法中,必须注意相乘的顺序.即使在均有意义时,也未必有=成立.可见矩阵乘法不满足交换律.
  第4题
  计算得:
  结论3 方阵A和它同阶的单位阵作乘积,结果仍为A,即
  单位阵在矩阵乘法中的作用相当于数1在我们普通乘法中的作用.

  典型例题 
  例6.5.3 设,试计算
    
       
      
     
       
       
    结论4 两个非零矩阵的乘积可以是零矩阵.由此若,不能得出的结论.

  例6.5.4 利用矩阵的乘法,三元线性方程组
  可以写成矩阵的形式
 
  若记系数、未知量和常数项构成的三个矩阵分别为
 
  则线性方程组又可以简写为矩阵方程的形式:

  2、 运算性质(假设运算都是可行的) 
  (1) 结合律 
  (2) 分配律 (左分配律);
         (右分配律).
  (3) 
   3、 方阵的幂 
 
定义:设A是方阵,是一个正整数,规定
显然,记号表示个A的连乘积.

四、矩阵的转置


  1、 定义
 
定义:将矩阵A的行换成同序号的列所得到的新矩阵称为矩阵A的转置矩阵,记作
  例如,矩阵的转置矩阵为
  2、运算性质(假设运算都是可行的)
  (1)  
  (2)  
  (3)  
  (4) 是常数.

  典型例题 
  例6.5.5  利用矩阵
  验证运算性质: 
      
  而
     
  所以
   

 
定义:如果方阵满足,即,则称A为对称矩阵
  对称矩阵的特点是:它的元素以主对角线为对称轴对应相等.

五、方阵的行列式


  1、定义
 
定义:由方阵A的元素所构成的行列式(各元素的位置不变),称为方阵A的行列式,记作

  2 、运算性质 
  (1)  (行列式的性质)
  (2) ,特别地: 
  (3) 是常数,A的阶数为n)
  思考:设A为阶方阵,那么的行列式与A的行列式之间的关系为什么不是,而是

  不妨自行设计一个二阶方阵,计算一下
  例如,则
  于是,而 
  思考:,有几种方法可以求
    方法一:先求矩阵乘法,得到一个二阶方阵,再求其行列式.
    方法二:先分别求行列式,再取它们的乘积.
  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值