2.2 矩阵基本运算

2.2 矩阵的基本运算

本节介绍矩阵的线性运算和乘积运算,它们是矩阵的基本运算。正是这些基本运算的引入,才使矩阵在有序表达和描述有关对象这一基本作用的基础上,成为研究有关对象之间相互联系的有力工具,进而成为具有重要理论意义和实际应用价值的核心数学概念。

2.2.1 矩阵的线性运算

数量乘积(数乘)

定义:设 kkk 为任意一个数,A=(aij)m×nA = (a_{ij})_{m \times n}A=(aij​)m×n​,定义 kA=(kaij)m×nkA = (ka_{ij})_{m \times n}kA=(kaij​)m×n​ 称为数 kkk 与矩阵 AAA 的数量乘积,简称数乘。如果 k=−1k = -1k=−1,则 −A-A−A 称为矩阵 AAA 的负矩阵。

注意,kAkAkA 是数 kkk 与矩阵 AAA 的每一个元素相乘得到的矩阵,它与数 kkk 乘以行列式 ∣A∣|A|∣A∣ 之间有着本质区别。设 k,lk, lk,l 是数,AAA 是矩阵,则容易验证矩阵的数乘满足以下运算性质:

  1. 1A=A1A = A1A=A
  2. (kl)A=k(lA)(kl)A = k(lA)(kl)A=k(lA)
  3. (k+l)A=kA+lA(k + l)A = kA + lA(k+l)A=kA+lA

矩阵的加法与减法

定义:设 A=(aij)m×nA = (a_{ij})_{m \times n}A=(aij​)m×n​,B=(bij)m×nB = (b_{ij})_{m \times n}B=(bij​)m×n​,定义 A+B=(aij+bij)A + B = (a_{ij} + b_{ij})A+B=(aij​+bij​) A−B=(aij−bij)A - B = (a_{ij} - b_{ij})A−B=(aij​−bij​) 并称 A+BA + BA+B 及 A−BA - BA−B 为 AAA 与 BBB 的和及差。

例如: (1−12−2)+(30−15)=(4−113)\begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix} + \begin{pmatrix} 3 & 0 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} 4 & -1 \\ 1 & 3 \end{pmatrix}(12​−1−2​)+(3−1​05​)=(41​−13​)

必须注意,只有同型矩阵才能相加(减),且其和(差)仍保持同型。根据上述定义,不难验证矩阵的加法满足以下性质:

  1. A+B=B+AA + B = B + AA+B=B+A
  2. (A+B)+C=A+(B+C)(A + B) + C = A + (B + C)(A+B)+C=A+(B+C)
  3. A+0=AA + 0 = AA+0=A
  4. A+(−A)=0A + (-A) = 0A+(−A)=0
  5. k(A+B)=kA+kBk(A + B) = kA + kBk(A+B)=kA+kB,其中 kkk 为任意一个数

矩阵的数乘运算和加减运算统称为矩阵的线性运算。

例 2.1 已知 2A+3X=B2A + 3X = B2A+3X=B,其中

A=(1−123),B=(3140)A = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 1 \\ 4 & 0 \end{pmatrix}A=(12​−13​),B=(34​10​) 求矩阵 XXX。

解答:

注意到 3X=B−2A3X = B - 2A3X=B−2A,则 3X=(3140)−2(1−123)=(3140)−(2−246)=(130−6)3X = \begin{pmatrix} 3 & 1 \\ 4 & 0 \end{pmatrix} - 2 \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 4 & 0 \end{pmatrix} - \begin{pmatrix} 2 & -2 \\ 4 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 0 & -6 \end{pmatrix}3X=(34​10​)−2(12​−13​)=(34​10​)−(24​−26​)=(10​3−6​)

因此, X=13(130−6)=(1310−2)X = \frac{1}{3} \begin{pmatrix} 1 & 3 \\ 0 & -6 \end{pmatrix} = \begin{pmatrix} \frac{1}{3} & 1 \\ 0 & -2 \end{pmatrix}X=31​(10​3−6​)=(31​0​1−2​)

2.2.2 矩阵的乘法及方阵的幂

定义:设 A=(aij)m×nA = (a_{ij})_{m \times n}A=(aij​)m×n​,B=(bij)n×pB = (b_{ij})_{n \times p}B=(bij​)n×p​,定义 C=ABC = ABC=AB 为一个 m×pm \times pm×p 的矩阵 C=(cij)m×pC = (c_{ij})_{m \times p}C=(cij​)m×p​,其中 cij=∑k=1naikbkjc_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}cij​=∑k=1n​aik​bkj​

必须注意,只有当第一个矩阵 AAA 的列数等于第二个矩阵 BBB 的行数时,矩阵 AAA 与 BBB 的乘积 ABABAB 才有意义。否则 AAA 与 BBB 是不能相乘的。

矩阵乘法运算满足以下规律:

  1. (AB)C=A(BC)(AB)C = A(BC)(AB)C=A(BC)
  2. k(AB)=(kA)B=A(kB)k(AB) = (kA)B = A(kB)k(AB)=(kA)B=A(kB),其中 kkk 为任意一个数
  3. A(B+C)=AB+ACA(B + C) = AB + ACA(B+C)=AB+AC,(B+C)A=BA+CA(B + C)A = BA + CA(B+C)A=BA+CA
  4. AE=AAE = AAE=A,EA=AEA = AEA=A
  5. 设 A,BA, BA,B 均为同阶方阵,则 ∣AB∣=∣A∣∣B∣|AB| = |A||B|∣AB∣=∣A∣∣B∣

例 2.2

设 A=(1201)A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}A=(10​21​),B=(0110)B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}B=(01​10​)

计算 ABABAB 和 BABABA。

解答:

AB=(1201)(0110)=(2110)AB = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}AB=(10​21​)(01​10​)=(21​10​) BA=(0110)(1201)=(1201)BA = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}BA=(01​10​)(10​21​)=(10​21​)

由此可见,矩阵乘法不满足交换律,即一般来说,AB≠BAAB \neq BAAB=BA。

2.2.3 矩阵的转置

定义:将矩阵 A=(aij)m×nA = (a_{ij})_{m \times n}A=(aij​)m×n​ 的行依次转换成同序数得到的 n×mn \times mn×m 矩阵称为矩阵 AAA 的转置矩阵,记为 ATA^TAT。

例如,矩阵 A=(123456)A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}A=(14​25​36​) 的转置矩阵为 AT=(142536)A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}AT=​123​456​​

矩阵的转置满足以下规律:

  1. (AT)T=A(A^T)^T = A(AT)T=A
  2. (A+B)T=AT+BT(A + B)^T = A^T + B^T(A+B)T=AT+BT
  3. (kA)T=kAT(kA)^T = kA^T(kA)T=kAT,其中 kkk 是一个数
  4. (AB)T=BTAT(AB)^T = B^T A^T(AB)T=BTAT

例 2.3

已知矩阵 A=(1234)A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}A=(13​24​),B=(0110)B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}B=(01​10​)

求 (AB)T(AB)^T(AB)T,ATBTA^T B^TATBT 和 BTATB^T A^TBTAT。

解答:

利用矩阵乘法和转置的定义,直接计算得: (AB)T=((1234)(0110))T=((2143))T=(2413)(AB)^T = \left( \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right)^T = \left( \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} \right)^T = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}(AB)T=((13​24​)(01​10​))T=((24​13​))T=(21​43​) ATBT=(1324)(0110)=(3142)A^T B^T = \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 4 & 2 \end{pmatrix}ATBT=(12​34​)(01​10​)=(34​12​) BTAT=(0110)(1324)=(2413)B^T A^T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 4 \\ 1 & 3 \end{pmatrix}BTAT=(01​10​)(12​34​)=(21​43​)

由此可见,(AB)T=BTAT(AB)^T = B^T A^T(AB)T=BTAT。

应用实例

例 2.4

产品的销售数量:某厂向三个超市(代号为 XXX, YYY, ZZZ)发送四种产品(代号为 AAA, BBB, CCC, DDD)的包装箱数矩阵为: A=(50104020305010201051530)A = \begin{pmatrix} 50 & 10 & 40 \\ 20 & 30 & 50 \\ 10 & 20 & 10 \\ 5 & 15 & 30 \end{pmatrix}A=​5020105​10302015​40501030​​

每种产品的单价(元)分别为: B=(100200150250)B = \begin{pmatrix} 100 \\ 200 \\ 150 \\ 250 \end{pmatrix}B=​100200150250​​

计算每个超市的总销售额。

解答:

总销售额矩阵为: AB=(50104020305010201051530)(100200150250)=(2000037500975014250)AB = \begin{pmatrix} 50 & 10 & 40 \\ 20 & 30 & 50 \\ 10 & 20 & 10 \\ 5 & 15 & 30 \end{pmatrix} \begin{pmatrix} 100 \\ 200 \\ 150 \\ 250 \end{pmatrix} = \begin{pmatrix} 20000 \\ 37500 \\ 9750 \\ 14250 \end{pmatrix}AB=​5020105​10302015​40501030​​​100200150250​​=​2000037500975014250​​

所以每个超市的总销售额分别为:20000元,37500元,9750元和14250元。

 

  • 15
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值