AcWing---空调---差分

4262. 空调 - AcWing题库

思路:

读到将牛栏5~8的温度升高1个单位时,可以想到差分操作。但是我们该如何得到最小指令数量呢?首先,我们想要将t数组转变为p数组,可以等价为将0数组转变为p-t数组,等价为将0差分数组,转变为p-t差分数组,此时改变几个数即可(将某一个数+1,同时将某个数-1,从而使p-t差分数组转变为0差分数组的次数),求p-t差分数组正数之和即可。

C++代码:

#include<bits/stdc++.h>
using namespace std;

int n;
int p[100010];
int t[100010];
int d[100010];
int dd[100010];

int main(){
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>p[i];
    }
    for(int i=1;i<=n;i++){
        cin>>t[i];
    }
    for(int i=1;i<=n;i++){
        d[i]=p[i]-t[i];
    }
    for(int i=1;i<=n+1;i++){
        dd[i]=d[i]-d[i-1];
    }
    int num=0;
    for(int i=1;i<=n+1;i++){
        if(dd[i]>0){
            num+=dd[i];
        }
    }
    cout<<num;
    return 0;
}

Python代码:

n=int(input())
p=[0]+list(map(int,input().split()))
t=[0]+list(map(int,input().split()))
d=[0]*100010
dd=[0]*100010
for i in range(1,n+1):
    d[i]=p[i]-t[i]
for i in range(1,n+2):
    dd[i]=d[i]-d[i-1]
num=0
for i in range(1,n+2):
    if dd[i]>0:
        num+=dd[i]
print(num)

二维差分是一种常用的数据结构算法巧,用于高效地处理二维矩阵区间的更新和查询操作。它可以在O(1)的时间复杂度内完成区间的更新和查询操作,相比传统的暴力遍历方法,具有更高的效率。 二维差分的基本思想是将原始矩阵转化为一个差分矩阵,差分矩阵中的每个元素表示原始矩阵中相邻元素之间的差值。通过对差分矩阵进行预处理,可以实现对原始矩阵区间的更新和查询操作。 具体来说,二维差分的操作包括两个步骤:预处理和操作。预处理阶段,需要根据原始矩阵构建差分矩阵;操作阶段,可以通过对差分矩阵的更新来实现对原始矩阵区间的更新,同时可以通过对差分矩阵的求和来实现对原始矩阵区间的查询。 下面是二维差分的基本操作: 1. 构建差分矩阵:对于原始矩阵A,构建一个差分矩阵B,其中B[i][j] = A[i][j] - A[i-1][j] - A[i][j-1] + A[i-1][j-1]。 2. 区间更新:对于原始矩阵A的一个区间[left, right] x [top, bottom],将差分矩阵B的相应位置进行更新,即B[left][top] += val,B[right+1][top] -= val,B[left][bottom+1] -= val,B[right+1][bottom+1] += val。 3. 区间查询:对于原始矩阵A的一个区间[left, right] x [top, bottom],通过求和差分矩阵B的相应位置得到区间和,即sum = B[right][bottom] - B[left-1][bottom] - B[right][top-1] + B[left-1][top-1]。 二维差分可以广泛应用于各种算法问题,例如矩阵区间求和、矩阵区间更新等。它的时间复杂度较低,适用于处理大规模的数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值