Python torch.topk() 函数用法

torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) 

参数:
input -> 输入tensor
k -> 前k
dim -> 默认为输入tensor的最后一个维度
sorted -> 是否排序
largest -> False表示返回第k个最小值
示例1:

m=torch.arange(0,10)
print(m.topk(3))
torch.return_types.topk(
values=tensor([9, 8, 7]),
indices=tensor([9, 8, 7]))

示例2:

pred = torch.tensor([[-0.5816, -0.3873, -1.0215, -1.0145,  0.4053],
        [ 0.7265,  1.4164,  1.3443,  1.2035,  1.8823],
        [-0.4451,  0.1673,  1.2590, -2.0757,  1.7255],
        [ 0.2021,  0.3041,  0.1383,  0.3849, -1.6311]])
values, indices = pred.topk(4, dim=0, largest=True, sorted=True)
print(values)
print(indices)
tensor([[ 0.7265,  1.4164,  1.3443,  1.2035,  1.8823],
        [ 0.2021,  0.3041,  1.2590,  0.3849,  1.7255],
        [-0.4451,  0.1673,  0.1383, -1.0145,  0.4053],
        [-0.5816, -0.3873, -1.0215, -2.0757, -1.6311]])
tensor([[1, 1, 1, 1, 1],
        [3, 3, 2, 3, 2],
        [2, 2, 3, 0, 0],
        [0, 0, 0, 2, 3]])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值