剑指 Offer 42. 连续子数组的最大和

一、题目:

输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
要求时间复杂度为O(n)。

示例1:
输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

提示:
1 <= arr.length <= 10^5
-100 <= arr[i] <= 100
注意:本题与主站 53. 最大子序和相同。

二、思路和代码:

将第一个元素设为最大,以后循环一次之后的数组,大于0的元素就加到nums[i]上来,他和maxs最大较大值,最终的maxs就是求解结果。


class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        //默认第一个元素最大
        int maxs =nums[0];
        for(int i=1;i< nums.size();i++){         
            //正数+任意一个数X>=X;所以:  
            if(nums[i-1]>0)  nums[i] =nums[i]+nums[i-1];

            maxs=max(maxs,nums[i]);
        }                
        return maxs;
    }
};

怕什么真理无穷,进一步有进一步的欢喜。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甜橙の学习笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值