一、题目:
输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。
要求时间复杂度为O(n)。
示例1:
输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
提示:
1 <= arr.length <= 10^5
-100 <= arr[i] <= 100
注意:本题与主站 53. 最大子序和相同。
二、思路和代码:
将第一个元素设为最大,以后循环一次之后的数组,大于0的元素就加到nums[i]上来,他和maxs最大较大值,最终的maxs就是求解结果。
class Solution {
public:
int maxSubArray(vector<int>& nums) {
//默认第一个元素最大
int maxs =nums[0];
for(int i=1;i< nums.size();i++){
//正数+任意一个数X>=X;所以:
if(nums[i-1]>0) nums[i] =nums[i]+nums[i-1];
maxs=max(maxs,nums[i]);
}
return maxs;
}
};
怕什么真理无穷,进一步有进一步的欢喜。