题目描述
有一个箱子,开始时有n个黑球,m个蓝球。每一轮游戏规则如下:
第一步:奕奕有p的概率往箱子里添加一个黑球,有(1-p)的概率往箱子里添加一个蓝球。
第二步:华华随机从箱子里取出一个球。
华华喜欢黑球,他想知道k轮游戏之后箱子里黑球个数的期望。
输入描述:
输入五个整数n,m,k,a,b。
1<=n,m<=1e6,1<=k<=1e9
其中p=abab,且a<=b,0<=a<1e9+7,0<b<1e9+7
输出描述:
输出一个数表示k轮游戏后箱子里黑球个数的期望。
输出一个整数,为答案对1e9+7取模的结果。即设答案化为最简分式后的形式为abab,其中a和b互质。输出整数 x 使得bx≡a(mod 1e9+7)且0≤x<1e9+7。可以证明这样的整数x是唯一的。
示例1
输入
复制
2 2 1 1 2
输出
复制
2
示例2
输入
复制
2 2 2 3 10
输出
复制
184000003
直接设一个数组a[i]代表着第i次黑球数量的期望。然后就根据下面的方法来做:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
ll powmod(ll a,ll b) {ll res=1;a%=mod;
for(;b;b>>=1){if(b&1)res=resa%mod;a=aa%mod;}return res;}
ll inv(ll x)
{
return powmod(x,mod-2);
}
int main()
{
ll n,m,k,a,b;
cin>>n>>m>>k>>a>>b;
ll p=a*inv(b)%mod;
ll s=(n+m)*inv(n+m+1)%mod;
ll ans=n*powmod(s,k)%mod+p*(s-powmod(s,k+1))%mod*inv(1-s)%mod;
ans=(ans%mod+mod)%mod;
printf("%lld\n",ans);
return 0;
}
展开阅读全文
作者:ccsu_deer
来源:CSDN
原文:https://blog.csdn.net/qq_41286356/article/details/90320529
版权声明:本文为博主原创文章,转载请附上博文链接!